Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 114(12): 3240-3245, 2017 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-28265101

RESUMO

The mammalian heart pumps blood through the vessels, maintaining the dynamic equilibrium in a circulatory system driven by two pumps in series. This vital function is based on the fine-tuning of cardiac performance by the Frank-Starling mechanism that relates the pressure exerted by the contracting ventricle (end systolic pressure) to its volume (end systolic volume). At the level of the sarcomere, the structural unit of the cardiac myocytes, the Frank-Starling mechanism consists of the increase in active force with the increase of sarcomere length (length-dependent activation). We combine sarcomere mechanics and micrometer-nanometer-scale X-ray diffraction from synchrotron light in intact ventricular trabeculae from the rat to measure the axial movement of the myosin motors during the diastole-systole cycle under sarcomere length control. We find that the number of myosin motors leaving the off, ATP hydrolysis-unavailable state characteristic of the diastole is adjusted to the sarcomere length-dependent systolic force. This mechanosensing-based regulation of the thick filament makes the energetic cost of the systole rapidly tuned to the mechanical task, revealing a prime aspect of the Frank-Starling mechanism. The regulation is putatively impaired by cardiomyopathy-causing mutations that affect the intramolecular and intermolecular interactions controlling the off state of the motors.


Assuntos
Contração Miocárdica , Miocárdio/metabolismo , Miosinas/metabolismo , Animais , Cálcio/metabolismo , Diástole , Acoplamento Excitação-Contração , Masculino , Mecanotransdução Celular , Ratos , Sarcômeros/metabolismo , Sístole , Difração de Raios X
2.
Proc Natl Acad Sci U S A ; 113(13): 3675-80, 2016 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-26984499

RESUMO

The power in the myocardium sarcomere is generated by two bipolar arrays of the motor protein cardiac myosin II extending from the thick filament and pulling the thin, actin-containing filaments from the opposite sides of the sarcomere. Despite the interest in the definition of myosin-based cardiomyopathies, no study has yet been able to determine the mechanokinetic properties of this motor protein in situ. Sarcomere-level mechanics recorded by a striation follower is used in electrically stimulated intact ventricular trabeculae from the rat heart to determine the isotonic velocity transient following a stepwise reduction in force from the isometric peak force TP to a value T(0.8-0.2 TP). The size and the speed of the early rapid shortening (the isotonic working stroke) increase by reducing T from ∼3 nm per half-sarcomere (hs) and 1,000 s(-1) at high load to ∼8 nm⋅hs(-1) and 6,000 s(-1) at low load. Increases in sarcomere length (1.9-2.2 µm) and external [Ca(2+)]o (1-2.5 mM), which produce an increase of TP, do not affect the dependence on T, normalized for TP, of the size and speed of the working stroke. Thus, length- and Ca(2+)-dependent increase of TP and power in the heart can solely be explained by modulation of the number of myosin motors, an emergent property of their array arrangement. The motor working stroke is similar to that of skeletal muscle myosin, whereas its speed is about three times slower. A new powerful tool for investigations and therapies of myosin-based cardiomyopathies is now within our reach.


Assuntos
Miosinas Cardíacas/fisiologia , Contração Miocárdica/fisiologia , Animais , Fenômenos Biomecânicos , Cálcio/metabolismo , Estimulação Elétrica , Técnicas In Vitro , Masculino , Proteínas Motores Moleculares/fisiologia , Ratos , Ratos Wistar , Sarcômeros/fisiologia , Miosinas Ventriculares/fisiologia
3.
J Physiol ; 596(7): 1243-1257, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29148051

RESUMO

KEY POINTS: The different performance of slow and fast muscles is mainly attributed to diversity of the myosin heavy chain (MHC) isoform expressed within them. In this study fast sarcomere-level mechanics has been applied to Ca2+ -activated single permeabilised fibres isolated from soleus (containing the slow myosin isoform) and psoas (containing the fast myosin isoform) muscles of rabbit for a comparative definition of the mechano-kinetics of force generation by slow and fast myosin isoforms in situ. The stiffness and the force of the slow myosin isoform are three times smaller than those of the fast isoform, suggesting that the stiffness of the myosin motor is a determinant of the isoform-dependent functional diversity between skeletal muscles. These results open the question of the mechanism that can reconcile the reduced performance of the slow MHC with the higher efficiency of the slow muscle. ABSTRACT: The skeletal muscle exhibits large functional differences depending on the myosin heavy chain (MHC) isoform expressed in its molecular motor, myosin II. The differences in the mechanical features of force generation by myosin isoforms were investigated in situ by using fast sarcomere-level mechanical methods in permeabilised fibres (sarcomere length 2.4 µm, temperature 12°C, 4% dextran T-500) from slow (soleus, containing the MHC-1 isoform) and fast (psoas, containing the MHC-2X isoform) skeletal muscle of the rabbit. The stiffness of the half-sarcomere was determined at the plateau of Ca2+ -activated isometric contractions and in rigor and analysed with a model that accounted for the filament compliance to estimate the stiffness of the myosin motor (ε). ε was 0.56 ± 0.04 and 1.70 ± 0.37 pN nm-1 for the slow and fast isoform, respectively, while the average strain per attached motor (s0 ) was similar (∼3.3 nm) in both isoforms. Consequently the force per motor (F0  = Îµs0 ) was three times smaller in the slow isoform than in the fast isoform (1.89 ± 0.43 versus 5.35 ± 1.51 pN). The fraction of actin-attached motors responsible for maximum isometric force at saturating Ca2+ (T0,4.5 ) was 0.47 ± 0.09 in soleus fibres, 70% larger than that in psoas fibres (0.29 ± 0.08), so that F0 in slow fibres was decreased by only 53%. The lower stiffness and force of the slow myosin isoform open the question of the molecular basis of the higher efficiency of slow muscle with respect to fast muscle.


Assuntos
Contração Muscular/fisiologia , Fibras Musculares de Contração Rápida/fisiologia , Fibras Musculares de Contração Lenta/fisiologia , Miosina Tipo II/metabolismo , Animais , Masculino , Coelhos
4.
J Physiol ; 596(13): 2581-2596, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29714038

RESUMO

KEY POINTS: Fast sarcomere-level mechanics in intact trabeculae, which allows the definition of the mechano-kinetic properties of cardiac myosin in situ, is a fundamental tool not only for understanding the molecular mechanisms of heart performance and regulation, but also for investigating the mechanisms of the cardiomyopathy-causing mutations in the myosin and testing small molecules for therapeutic interventions. The approach has been applied to measure the stiffness and force of the myosin motor and the fraction of motors attached during isometric twitches of electrically paced trabeculae under different extracellular Ca2+ concentrations. Although the average force of the cardiac myosin motor (∼6 pN) is similar to that of the fast myosin isoform of skeletal muscle, the stiffness (1.07 pN nm-1 ) is 2- to 3-fold smaller. The increase in the twitch force developed in the presence of larger extracellular Ca2+ concentrations is fully accounted for by a proportional increase in the number of attached motors. ABSTRACT: The mechano-kinetic properties of the cardiac myosin were studied in situ, in trabeculae dissected from the right ventricle of the rat heart, by measuring the stiffness of the half-sarcomere both at the twitch force peak (Tp ) of an electrically paced intact trabecula at different extracellular Ca2+ concentrations ([Ca2+ ]o ), and in the same trabecula after skinning and induction of rigor. Taking into account the contribution of filament compliance to half-sarcomere compliance and the lattice geometry, we found that the stiffness of the cardiac myosin motor is 1.07 ± 0.09 pN nm-1 , which is slightly larger than that of the slow myosin isoform of skeletal muscle (0.6-0.8 pN nm-1 ) and 2- to 3-fold smaller than that of the fast skeletal muscle isoform. The increase in Tp from 61 ± 4 kPa to 93 ± 9 kPa, induced by raising [Ca2+ ]o from 1 to 2.5 mm at sarcomere length ∼2.2 µm, is accompanied by an increase of the half-sarcomere stiffness that is explained by an increase of the fraction of actin-attached motors from 0.08 ± 0.01 to 0.12 ± 0.02, proportional to Tp . Consequently, each myosin motor bears an average force of 6.14 ± 0.52 pN independently of Tp and [Ca2+ ]o . The application of fast sarcomere-level mechanics to intact trabeculae to define the mechano-kinetic properties of the cardiac myosin in situ represents a powerful tool for investigating cardiomyopathy-causing mutations in the myosin motor and testing specific therapeutic interventions.


Assuntos
Cálcio/metabolismo , Espaço Extracelular/metabolismo , Contração Muscular , Fibras Musculares Esqueléticas/fisiologia , Miosinas/fisiologia , Animais , Masculino , Ratos , Ratos Wistar
5.
J Gen Physiol ; 151(1): 53-65, 2019 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-30510036

RESUMO

When striated (skeletal and cardiac) muscle is in its relaxed state, myosin motors are packed in helical tracks on the surface of the thick filament, folded toward the center of the sarcomere, and unable to bind actin or hydrolyze ATP (OFF state). This raises the question of whatthe mechanism is that integrates the Ca2+-dependent thin filament activation, making myosin heads available for interaction with actin. Here we test the interdependency of the thin and thick filament regulatory mechanisms in intact trabeculae from the rat heart. We record the x-ray diffraction signals that mark the state of the thick filament during inotropic interventions (increase in sarcomere length from 1.95 to 2.25 µm and addition of 10-7 M isoprenaline), which potentiate the twitch force developed by an electrically paced trabecula by up to twofold. During diastole, none of the signals related to the OFF state of the thick filament are significantly affected by these interventions, except the intensity of both myosin-binding protein C- and troponin-related meridional reflections, which reduce by 20% in the presence of isoprenaline. These results indicate that recruitment of myosin motors from their OFF state occurs independently and downstream from thin filament activation. This is in agreement with the recently discovered mechanism based on thick filament mechanosensing in which the number of motors available for interaction with actin rapidly adapts to the stress on the thick filament and thus to the loading conditions of the contraction. The gain of this positive feedback may be modulated by both sarcomere length and the degree of phosphorylation of myosin-binding protein C.


Assuntos
Diástole/fisiologia , Miocárdio/metabolismo , Miosinas/metabolismo , Actinas/metabolismo , Animais , Cálcio/metabolismo , Masculino , Contração Muscular/fisiologia , Músculo Esquelético/metabolismo , Fosforilação/fisiologia , Ratos , Ratos Wistar , Sarcômeros/metabolismo
6.
Can J Microbiol ; 53(2): 223-30, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17496970

RESUMO

Saccharomyces cerevisiae is a good model with which to study the effects of morphologic differentiation on the ecological behaviour of fungi. In this work, 33 morphologic mutants of a natural strain of S. cerevisiae, obtained with UV mutagenesis, were selected for their streak shape and cell shape on rich medium. Two of them, showing both high sporulation proficiency and constitutive pseudohyphal growth, were analysed from a genetic and physiologic point of view. Each mutant carries a recessive monogenic mutation, and the two mutations reside in unlinked genes. Flocculation ability and responsiveness to different stimuli distinguished the two mutants. Growth at 37 degrees C affected the cell but not the colony morphology, suggesting that these two phenotypes are regulated differently. The effect of ethidium bromide, which affects mitochondrial DNA replication, suggested a possible "retrograde action" of mitochondria in pseudohyphal growth.


Assuntos
Mutação , Saccharomyces cerevisiae/genética , Antimicina A/farmacologia , Cloranfenicol/farmacologia , Etídio/farmacologia , Mitocôndrias/fisiologia , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/crescimento & desenvolvimento , Esporos Fúngicos/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA