RESUMO
Gold nanoparticles are excellent intracellular markers in X-ray imaging. Having shown previously the suitability of gold nanoparticles to detect small groups of cells with the synchrotron-based computed tomography (CT) technique both ex vivo and in vivo, it is now demonstrated that even single-cell resolution can be obtained in the brain at least ex vivo. Working in a small animal model of malignant brain tumour, the image quality obtained with different imaging modalities was compared. To generate the brain tumour, 1 × 10(5) C6 glioma cells were loaded with gold nanoparticles and implanted in the right cerebral hemisphere of an adult rat. Raw data were acquired with absorption X-ray CT followed by a local tomography technique based on synchrotron X-ray absorption yielding single-cell resolution. The reconstructed synchrotron X-ray images were compared with images obtained by small animal magnetic resonance imaging. The presence of gold nanoparticles in the tumour tissue was verified in histological sections.
Assuntos
Encéfalo/citologia , Ouro/química , Nanopartículas Metálicas , Análise de Célula Única , Síncrotrons , Tomografia Computadorizada por Raios X/métodos , Animais , Neoplasias Encefálicas/patologia , Glioma/patologia , Imageamento por Ressonância Magnética , Ratos , Ratos WistarRESUMO
· Root hairs are known to be highly important for uptake of sparingly soluble nutrients, particularly in nutrient deficient soils. Development of increasingly sophisticated mathematical models has allowed uptake characteristics to be quantified. However, modelling has been constrained by a lack of methods for imaging live root hairs growing in real soils. · We developed a plant growth protocol and used Synchrotron Radiation X-ray Tomographic Microscopy (SRXTM) to uncover the three-dimensional (3D) interactions of root hairs in real soil. We developed a model of phosphate uptake by root hairs based directly on the geometry of hairs and associated soil pores as revealed by imaging. · Previous modelling studies found that root hairs dominate phosphate uptake. By contrast, our study suggests that hairs and roots contribute equally. We show that uptake by hairs is more localized than by roots and strongly dependent on root hair and aggregate orientation. · The ability to image hair-soil interactions enables a step change in modelling approaches, allowing a more realistic treatment of processes at the scale of individual root hairs in soil pores.
Assuntos
Imageamento Tridimensional/métodos , Fosfatos/metabolismo , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/crescimento & desenvolvimento , Solo , Síncrotrons , Triticum/anatomia & histologia , Simulação por Computador , Modelos Biológicos , RizosferaRESUMO
High-resolution imaging in small animal models of neurologic disease is a technical challenge. In a pilot project, we have explored a non-destructive synchrotron imaging technique for the 3D visualization of intracerebral tissue transplants in a well-established small animal model of Huntington's disease. Four adult female Sprague Dawley rats each received injections of 0.12 M quinolinic acid (QA) into two target positions in the left striatum, thus creating unilateral left-sided striatal lesions similar to those frequently seen in patients suffering from Huntington's disease. One week after lesioning, the animals received transplants prepared from whole ganglionic eminences (wGEs) obtained from 13- to 14-day-old rat embryos. Of the four lesioned animals, three received transplants of GNP-loaded cells and one animal received a transplant of naïve cells, serving as control. Post-mortem synchrotron-based microCT was used to obtain images of the neurotransplants. The images obtained of GNP-loaded tissue transplants at the synchrotron corresponded in size and shape to the histological images of transplants developed from naïve cells. Thus, we conclude that non-destructive synchrotron imaging techniques such as phase-contrast imaging are suitable to obtain high-resolution images of GNP-loaded tissue transplants.
RESUMO
Phase retrieval from unidirectional radiographic differential phase contrast images requires integration of noisy data. A method is presented, which aims to suppress stripe artifacts arising from direct image integration. It is purely algorithmic and therefore, compared to alternative approaches, neither additional alignment nor an increased scan time is required. We report on the theory of this method and present results using numerical as well as experimental data. The method shows significant improvements on the phase retrieval accuracy and enhances contrast in the phase image. Due to its general applicability, the proposed method provides a valuable tool for various 2D imaging applications using differential data.
Assuntos
Algoritmos , Armazenamento e Recuperação da Informação/métodos , Intensificação de Imagem Radiográfica/métodos , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Difração de Raios X/métodos , Dinâmica não LinearRESUMO
The laser sintering of polymers is an additive manufacturing technology that is becoming increasingly established in the industrial environment. This study investigated the thickness-dependent permeation properties of laser-sintered (LS) polymers as required to design and produce components with a special barrier performance to gaseous substances. Helium and oxygen permeation experiments were carried out on quenched and standard LS polyamide 12 (PA12) sheets generated with two, four, six, and eight layers at a constant powder layer thickness of 100 µm. The structural properties of the sheets were examined by differential scanning calorimetry, light microscopy, and X-ray micro-computed tomography. A reduction in thickness resulted in higher diffusion coefficients for both types of LS sheets. An explanation could be the large volume fraction of poorly sintered powder particles adhering to the surfaces and incomplete melting and low consolidation of the polymer at small thicknesses. The thickness-dependency of the solubility coefficients was the opposite, especially for the standard LS sheets, which might be related to the larger pore volume in thicker sheets. As both effects compensated for each other, nearly constant permeation coefficients for all thicknesses were observed. The results provide further insights into different material characteristics of thin LS PA12 structures and offer new information on factors relevant to their solution and diffusion behavior.
RESUMO
Over the last decades, great strides were made in the development of novel implants for the treatment of bone defects. The increasing versatility and complexity of these implant designs request for concurrent advances in means to assess in vivo the course of induced bone formation in preclinical models. Since its discovery, micro-computed tomography (micro-CT) has excelled as powerful high-resolution technique for non-invasive assessment of newly formed bone tissue. However, micro-CT fails to provide spatiotemporal information on biological processes ongoing during bone regeneration. Conversely, due to the versatile applicability and cost-effectiveness, single photon emission computed tomography (SPECT) would be an ideal technique for assessing such biological processes with high sensitivity and for nuclear imaging comparably high resolution (<1 mm). Herein, we employ modular designed poly(ethylene glycol)-based hydrogels that release bone morphogenetic protein to guide the healing of critical sized calvarial bone defects. By combined in vivo longitudinal multi-pinhole SPECT and micro-CT evaluations we determine the spatiotemporal course of bone formation and remodeling within this synthetic hydrogel implant. End point evaluations by high resolution micro-CT and histological evaluation confirm the value of this approach to follow and optimize bone-inducing biomaterials.