Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Curr Opin Microbiol ; 73: 102322, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37130502

RESUMO

Fever is a part of the human innate immune response that contributes to limiting microbial growth and development in many infectious diseases. For the parasite Plasmodium falciparum, survival of febrile temperatures is crucial for its successful propagation in human populations as well as a fundamental aspect of malaria pathogenesis. This review discusses recent insights into the biological complexity of the malaria parasite's heat-shock response, which involves many cellular compartments and essential metabolic processes to alleviate oxidative stress and accumulation of damaged and unfolded proteins. We highlight the overlap between heat-shock and artemisinin resistance responses, while also explaining how the malaria parasite adapts its fever response to fight artemisinin treatment. Additionally, we discuss how this systemic and essential fight for survival can also contribute to parasite transmission to mosquitoes.


Assuntos
Artemisininas , Malária Falciparum , Malária , Parasitos , Animais , Humanos , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo , Artemisininas/farmacologia , Artemisininas/metabolismo , Malária/tratamento farmacológico , Resposta ao Choque Térmico , Malária Falciparum/parasitologia , Proteínas de Protozoários/metabolismo
2.
PLoS Negl Trop Dis ; 16(6): e0010493, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35714097

RESUMO

Plasmodium vivax blood-stage invasion into reticulocyte is critical for parasite development. Thus, validation of novel parasite invasion ligands is essential for malaria vaccine development. Recently, we demonstrated that EBP2, a Duffy binding protein (DBP) paralog, is antigenically distinct from DBP and could not be functionally inhibited by anti-DBP antibodies. Here, we took advantage of a small outbreak of P.vivax malaria, located in a non-malarious area of Brazil, to investigate for the first time IgM/IgG antibodies against EBP2 and DEKnull-2 (an engineering DBPII vaccine) among individuals who had their first and brief exposure to P.vivax (16 cases and 22 non-cases). Our experimental approach included 4 cross sectional surveys at 3-month interval (12-month follow-up). The results demonstrated that while a brief initial P.vivax infection was not efficient to induce IgM/ IgG antibodies to either EBP2 or DEKnull-2, IgG antibodies against DEKnull-2 (but not EBP2) were boosted by recurrent blood-stage infections following treatment. Of interest, in most recurrent P. vivax infections (4 out of 6 patients) DEKnull-2 IgG antibodies were sustained for 6 to 12 months. Polymorphisms in the ebp2 gene does not seem to explain EBP2 low immunogenicity as the ebp2 allele associated with the P.vivax outbreak presented high identity to the original EBP2 isolate used as recombinant protein. Although EBP2 antibodies were barely detectable after a primary episode of P.vivax infection, EBP2 was highly recognized by serum IgG from long-term malaria-exposed Amazonians (range from 35 to 92% according to previous malaria episodes). Taken together, the results showed that individuals with a single and brief exposure to P.vivax infection develop very low anti-EBP2 antibodies, which tend to increase after long-term malaria exposure. Finally, the findings highlighted the potential of DEKnull-2 as a vaccine candidate, as in non-immune individuals anti-DEKnull-2 IgG antibodies were boosted even after a brief exposure to P.vivax blood stages.


Assuntos
Malária Vivax , Malária , Anticorpos Antiprotozoários , Formação de Anticorpos , Antígenos de Protozoários/genética , Estudos Transversais , Humanos , Imunoglobulina G , Imunoglobulina M , Malária Vivax/parasitologia , Plasmodium vivax/genética , Proteínas de Protozoários/genética , Receptores de Superfície Celular/genética
3.
PLoS Negl Trop Dis ; 16(8): e0010305, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35921373

RESUMO

BACKGROUND: The simultaneous infection of Plasmodium falciparum and Epstein-Barr virus (EBV) could promote the development of the aggressive endemic Burkitt's Lymphoma (eBL) in children living in P. falciparum holoendemic areas. While it is well-established that eBL is not related to other human malaria parasites, the impact of EBV infection on the generation of human malaria immunity remains largely unexplored. Considering that this highly prevalent herpesvirus establishes a lifelong persistent infection on B-cells with possible influence on malaria immunity, we hypothesized that EBV co-infection could have impact on the naturally acquired antibody responses to P. vivax, the most widespread human malaria parasite. METHODOLOGY/PRINCIPAL FINDINGS: The study design involved three cross-sectional surveys at six-month intervals (baseline, 6 and 12 months) among long-term P. vivax exposed individuals living in the Amazon rainforest. The approach focused on a group of malaria-exposed individuals whose EBV-DNA (amplification of balf-5 gene) was persistently detected in the peripheral blood (PersVDNA, n = 27), and an age-matched malaria-exposed group whose EBV-DNA could never be detected during the follow-up (NegVDNA, n = 29). During the follow-up period, the serological detection of EBV antibodies to lytic/ latent viral antigens showed that IgG antibodies to viral capsid antigen (VCA-p18) were significantly different between groups (PersVDNA > NegVDNA). A panel of blood-stage P. vivax antigens covering a wide range of immunogenicity confirmed that in general PersVDNA group showed low levels of antibodies as compared with NegVDNA. Interestingly, more significant differences were observed to a novel DBPII immunogen, named DEKnull-2, which has been associated with long-term neutralizing antibody response. Differences between groups were less pronounced with blood-stage antigens (such as MSP1-19) whose levels can fluctuate according to malaria transmission. CONCLUSIONS/SIGNIFICANCE: In a proof-of-concept study we provide evidence that a persistent detection of EBV-DNA in peripheral blood of adults in a P. vivax semi-immune population may impact the long-term immune response to major malaria vaccine candidates.


Assuntos
Linfoma de Burkitt , Coinfecção , Infecções por Vírus Epstein-Barr , Malária Falciparum , Malária Vivax , Malária , Adulto , Anticorpos Antiprotozoários , Formação de Anticorpos , Antígenos Virais , Linfoma de Burkitt/complicações , Linfoma de Burkitt/parasitologia , Criança , Coinfecção/complicações , Estudos Transversais , Infecções por Vírus Epstein-Barr/complicações , Herpesvirus Humano 4/genética , Humanos , Malária/complicações , Malária Falciparum/parasitologia , Plasmodium vivax
4.
Front Immunol ; 12: 704653, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34675915

RESUMO

Malaria remains a major public health problem worldwide, and Plasmodium vivax is the most widely distributed malaria parasite. Naturally acquired binding inhibitory antibodies (BIAbs) to region II of the Duffy binding protein (DBPII), a P. vivax ligand that is critical for reticulocyte invasion, are associated with a reduced risk of clinical malaria. Owing to methodological issues in evaluating antibodies that inhibit the DBPII-DARC interaction, a limited number of studies have investigated DBPII BIAbs in P. vivax-exposed populations. Based on the assumption that individuals with a consistent BIAb response are characterized by strain-transcending immune responses, we hypothesized that detecting broadly reactive DBPII antibodies would indicate the presence of BIAb response. By taking advantage of an engineered DBPII immunogen targeting conserved DBPII neutralizing epitopes (DEKnull-2), we standardized a multiplex flow cytometry-based serological assay to detect broadly neutralizing IgG antibodies. For this study, a standard in vitro cytoadherence assay with COS-7 cells expressing DBPII was used to test for DBPII BIAb response in long-term P. vivax-exposed Amazonian individuals. Taken together, the results demonstrate that this DBPII-based multiplex assay facilitates identifying DBPII BIAb carriers. Of relevance, the ability of the multiplex assay to identify BIAb responders was highly accurate when the positivity for all antigens was considered. In conclusion, the standardized DBPII-based flow cytometric assay confirmed that DBPII-BIAb activity was associated with the breadth rather than the magnitude of anti-DBPII antibodies. Altogether, our results suggest that multiplex detection of broadly DBPII-reactive antibodies facilitates preliminary screening of BIAb responders.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antiprotozoários , Antígenos de Protozoários/imunologia , Citometria de Fluxo , Malária Vivax/imunologia , Plasmodium vivax/imunologia , Proteínas de Protozoários/imunologia , Receptores de Superfície Celular/imunologia , Anticorpos Antiprotozoários/imunologia , Humanos , Malária Vivax/diagnóstico
5.
PLoS One ; 15(5): e0232786, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32379804

RESUMO

BACKGROUND: A low proportion of P. vivax-exposed individuals acquire protective strain-transcending neutralizing IgG antibodies that are able to block the interaction between the Duffy binding protein II (DBPII) and its erythrocyte-specific invasion receptor. In a recent study, a novel surface-engineered DBPII-based vaccine termed DEKnull-2, whose antibody response target conserved DBPII epitopes, was able to induce broadly binding-inhibitory IgG antibodies (BIAbs) that inhibit P. vivax reticulocyte invasion. Toward the development of DEKnull-2 as an effective P. vivax blood-stage vaccine, we investigate the relationship between naturally acquired DBPII-specific IgM response and the profile of IgG antibodies/BIAbs activity over time. METHODOLOGY/PRINCIPAL FINDINGS: A nine-year follow-up study was carried-out among long-term P. vivax-exposed Amazonian individuals and included six cross-sectional surveys at periods of high and low malaria transmission. DBPII immune responses associated with either strain-specific (Sal1, natural DBPII variant circulating in the study area) or conserved epitopes (DEKnull-2) were monitored by conventional serology (ELISA-detected IgM and IgG antibodies), with IgG BIAbs activity evaluated by functional assays (in vitro inhibition of DBPII-erythrocyte binding). The results showed a tendency of IgM antibodies toward Sal1-specific response; the profile of Sal1 over DEKnull-2 was not associated with acute malaria and sustained throughout the observation period. The low malaria incidence in two consecutive years allowed us to demonstrate that variant-specific IgG (but not IgM) antibodies waned over time, which resulted in IgG skewed to the DEKnull-2 response. A persistent DBPII-specific IgM response was not associated with the presence (or absence) of broadly neutralizing IgG antibody response. CONCLUSIONS/SIGNIFICANCE: The current study demonstrates that long-term exposure to low and unstable levels of P. vivax transmission led to a sustained DBPII-specific IgM response against variant-specific epitopes, while sustained IgG responses are skewed to conserved epitopes. Further studies should investigate on the role of a stable and persistent IgM antibody response in the immune response mediated by DBPII.


Assuntos
Antígenos de Protozoários/imunologia , Imunoglobulina G/imunologia , Imunoglobulina M/imunologia , Vacinas Antimaláricas/uso terapêutico , Malária Vivax/prevenção & controle , Plasmodium vivax/imunologia , Proteínas de Protozoários/imunologia , Receptores de Superfície Celular/imunologia , Adulto , Anticorpos Neutralizantes/imunologia , Formação de Anticorpos , Feminino , Humanos , Vacinas Antimaláricas/imunologia , Malária Vivax/imunologia , Masculino , Pessoa de Meia-Idade
6.
PLoS One ; 13(11): e0207244, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30419071

RESUMO

Plasmodium vivax remains a global health problem and its ability to cause relapses and subpatent infections challenge control and elimination strategies. Even in low malaria transmission settings, such as the Amazon basin, where progress in malaria control has caused a remarkable reduction in case incidence, a recent increase in P. vivax transmission demonstrates the continued vulnerability of P.vivax-exposed populations. As part of a search for complementary approaches to P.vivax surveillance in areas in which adults are the majority of the exposed-population, here we evaluated the potential of serological markers covering a wide range of immunogenicity to estimate malaria transmission trends. For this, antibodies against leading P. vivax blood-stage vaccine candidates were assessed during a 9 year follow-up study among adults exposed to unstable malaria transmission in the Amazon rainforest. Circulating antibody levels against immunogenic P. vivax proteins, such as the Apical Membrane Antigen-1, were a sensitive measure of recent P. vivax exposure, while antibodies against less immunogenic proteins were indicative of naturally-acquired immunity, including the novel engineered Duffy binding protein II immunogen (DEKnull-2). Our results suggest that the robustness of serology to estimate trends in P.vivax malaria transmission will depend on the immunological background of the study population, and that for adult populations exposed to unstable P.vivax malaria transmission, the local heterogeneity of antibody responses should be considered when considering use of serological surveillance.


Assuntos
Anticorpos Antiprotozoários/sangue , Malária Vivax/imunologia , Malária Vivax/transmissão , Plasmodium vivax/imunologia , Adulto , Biomarcadores/sangue , Brasil , Estudos de Coortes , Estudos Transversais , Feminino , Seguimentos , Humanos , Malária Vivax/sangue , Masculino , Pessoa de Meia-Idade , Floresta Úmida , Fatores de Tempo
7.
Sci Rep ; 7: 40884, 2017 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-28098233

RESUMO

MicroRNAs (miRNAs) are key regulators of developmental processes, such as cell fate determination and differentiation. Previous studies showed Dicer knockdown in honeybee embryos disrupt the processing of functional mature miRNAs and impairs embryo patterning. Here we investigated the expression profiles of miRNAs in honeybee embryogenesis and the role of the highly conserved miR-34-5p in the regulation of genes involved in insect segmentation. A total of 221 miRNAs were expressed in honey bee embryogenesis among which 97 mature miRNA sequences have not been observed before. Interestingly, we observed a switch in dominance between the 5-prime and 3-prime arm of some miRNAs in different embryonic stages; however, most miRNAs present one dominant arm across all stages of embryogenesis. Our genome-wide analysis of putative miRNA-target networks and functional pathways indicates miR-34-5p is one of the most conserved and connected miRNAs associated with the regulation of genes involved in embryonic patterning and development. In addition, we experimentally validated that miR-34-5p directly interacts to regulatory elements in the 3'-untranslated regions of pair-rule (even-skipped, hairy, fushi-tarazu transcription factor 1) and cytoskeleton (actin5C) genes. Our study suggests that miR-34-5p may regulate the expression of pair-rule and cytoskeleton genes during early development and control insect segmentation.


Assuntos
Citoesqueleto/genética , Fatores de Transcrição Fushi Tarazu/genética , Proteínas de Homeodomínio/genética , Proteínas de Insetos/genética , MicroRNAs/metabolismo , Regiões 3' não Traduzidas , Actinas/química , Actinas/genética , Actinas/metabolismo , Animais , Sequência de Bases , Abelhas/genética , Sítios de Ligação , Desenvolvimento Embrionário/genética , Fatores de Transcrição Fushi Tarazu/química , Fatores de Transcrição Fushi Tarazu/metabolismo , Genoma , Proteínas de Homeodomínio/química , Proteínas de Homeodomínio/metabolismo , Proteínas de Insetos/química , Proteínas de Insetos/metabolismo , MicroRNAs/química , MicroRNAs/genética , Alinhamento de Sequência , Transcriptoma
8.
Sci Rep ; 7(1): 13779, 2017 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-29062081

RESUMO

Plasmodium vivax invasion into human reticulocytes is a complex process. The Duffy binding protein (DBP) dimerization with its cognate receptor is vital for junction formation in the invasion process. Due to its functional importance, DBP is considered a prime vaccine candidate, but variation in B-cell epitopes at the dimer interface of DBP leads to induction of strain-limited immunity. We believe that the polymorphic residues tend to divert immune responses away from functionally conserved epitopes important for receptor binding or DBP dimerization. As a proof of concept, we engineered the vaccine DEKnull to ablate the dominant Bc epitope to partially overcome strain-specific immune antibody responses. Additional surface engineering on the next generation immunogen, DEKnull-2, provides an immunogenicity breakthrough to conserved protective epitopes. DEKnull-2 elicits a stronger broadly neutralizing response and reactivity with long-term persistent antibody responses of acquired natural immunity. By using novel engineered DBP immunogens, we validate that the prime targets of protective immunity are conformational epitopes at the dimer interface. These successful results indicate a potential approach that can be used generally to improve efficacy of other malaria vaccine candidates.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antiprotozoários/imunologia , Antígenos de Protozoários/imunologia , Eritrócitos/imunologia , Vacinas Antimaláricas/imunologia , Engenharia de Proteínas/métodos , Proteínas de Protozoários/imunologia , Receptores de Superfície Celular/imunologia , Animais , Formação de Anticorpos , Ensaio de Imunoadsorção Enzimática , Eritrócitos/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Ligação Proteica
9.
Artigo em Inglês | MEDLINE | ID: mdl-28943755

RESUMO

The Duffy antigen receptor for chemokine (DARC) is a nonspecific receptor for several proinflammatory cytokines. It is homologous to the G-protein chemokine receptor superfamily, which is suggested to function as a scavenger in many inflammatory-and proinflammatory-related diseases. G-protein chemokine receptors are also known to play a critical role in infectious diseases; they are commonly used as entry vehicles by infectious agents. A typical example is the chemokine receptor CCR5 or CXCR4 used by HIV for infecting target cells. In malaria, DARC is considered an essential receptor that mediates the entry of the human and zoonotic malaria parasites Plasmodium vivax and Plasmodium knowlesi into human reticulocytes and erythrocytes, respectively. This process is mediated through interaction with the parasite ligand known as the Duffy binding protein (DBP). Most therapeutic strategies have been focused on blocking the interaction between DBP and DARC by targeting the parasite ligand, while strategies targeting the receptor, DARC, have not been intensively investigated. The rapid increase in drug resistance and the lack of new effective drugs or a vaccine for malaria constitute a major threat and a need for novel therapeutics to combat disease. This review explores strategies that can be used to target the receptor. Inhibitors of DARC, which block DBP-DARC interaction, can potentially provide an effective strategy for preventing malaria caused by P. vivax.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA