Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Healthcare (Basel) ; 10(8)2022 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-35893208

RESUMO

Multiple sclerosis (MS) is an inflammatory and neurodegenerative, potentially disabling disease of the central nervous system. OCT (Optical Coherence Tomography) and OCT-A (Optical Coherence Tomography with Angiography) are imaging techniques for the retina and choroid that are used in the diagnosis and monitoring of ophthalmological conditions. Their use has recently expanded the study of several autoimmune disorders, including MS. Although their application in MS remains unclear, the results seem promising. This review aimed to provide insight into the most recent OCT and OCT-A findings in MS and may function as a reference point for future research. According to the current literature, the retinal nerve fibre layer (RNFL) and ganglion cell-inner plexiform complex (GC-IPL) are significantly reduced in people with MS and are inversely correlated with disease duration. The use of OCT might help distinguish between MS and neuromyelitis optica spectrum disorders (NMOSD), as the latter presents with more pronounced thinning in both the RNFL and GC-IPL. The OCT-A findings in MS include reduced vessel density in the macula, peripapillary area, or both, and the enlargement of the foveal avascular zone (FAZ) in the setting of optic neuritis. Additionally, OCT-A might be able to detect damage in the very early stages of the disease as well as disease progression in severe cases.

2.
Healthcare (Basel) ; 10(3)2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35327019

RESUMO

Alzheimer's disease and vascular dementia account for the majority of cases of cognitive decline in elderly people. These two main forms of dementia, under which various subtypes fall, are often overlapping and, in some cases, definitive diagnosis may only be possible post-mortem. This has implications for the quality of care and the design of individualized interventions for these patients. Optical coherence tomography angiography (OCTA) is a non-invasive imaging modality used to visualize the retinal layers and vessels which shows encouraging results in the study of various neurological conditions, including dementia. This review aims to succinctly sum up the present state of knowledge and provide critical insight into emerging patterns of OCTA biomarker values in Alzheimer's disease and vascular dementia. According to the current literature, vessel density seems to be a common biomarker for both forms; inner retinal layer thickness might represent a biomarker preferentially affected in degenerative dementia including Alzheimer's, while, in contrast, the outer-layer thickness as a whole justifies attention as a potential vascular dementia biomarker. Radial peripapillary capillary density should also be further studied as a biomarker specifically linked to vascular dementia.

3.
Artigo em Inglês | MEDLINE | ID: mdl-32490014

RESUMO

The purpose was to study the anti-angiogenic effect of adipose-derived mesenchymal stem/stromal cells (ADMSCs) on experimentally induced corneal injuries. Corneal neovascularization (NV) was induced by incising and subsequently suturing the corneal surface in 32 New Zealand rabbits. Following suturing, the rabbits were randomly allocated into 2 groups, and received either phosphate-buffered saline (PBS) (control) or ADMSCs, both administered via three different routes. Digital images of the cornea were obtained two weeks post-incision to measure the area of neovascularized cornea. Tumor necrosis factor (TNF) was immunohistochemically assessed in the both groups. The corneal tissue was evaluated for vascular endothelial growth factor (VEGF). The extent of corneal NV in all eyes was assessed photographically by an independent observer. Fourteen days after the incisions, the degree of corneal NV was substantially decreased in the ADMSC-treated group (1.87 ± 0.9 mm2, 1.4 % ± 0.67 % of corneal surface) compared to the control and PBS-treated group (4.66 ± 1.74 mm2, 3.51 % ± 1.31 %, p < 0.001). ADMSCs significantly decreased injury-induced corneal NV in New Zealand rabbits two weeks post-treatment. This strategy has potential for use in the control of corneal NV in vivo.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA