Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 128(11): 112503, 2022 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-35363014

RESUMO

We have measured the 3d→2p transition x rays of kaonic ^{3}He and ^{4}He atoms using superconducting transition-edge-sensor microcalorimeters with an energy resolution better than 6 eV (FWHM). We determined the energies to be 6224.5±0.4(stat)±0.2(syst) eV and 6463.7±0.3(stat)±0.1(syst) eV, and widths to be 2.5±1.0(stat)±0.4(syst) eV and 1.0±0.6(stat)±0.3(stat) eV, for kaonic ^{3}He and ^{4}He, respectively. These values are nearly 10 times more precise than in previous measurements. Our results exclude the large strong-interaction shifts and widths that are suggested by a coupled-channel approach and agree with calculations based on optical-potential models.

2.
Eur Phys J C Part Fields ; 84(11): 1137, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39498278

RESUMO

The Pauli Exclusion Principle (PEP) appears from fundamental symmetries in quantum field theories, but its physical origin is still to be understood. High-precision experimental searches for small PEP violations permit testing key assumptions of the Standard Model with high sensitivity. We report on a dedicated measurement with Gator, a low-background, high-purity germanium detector operated at the Laboratori Nazionali del Gran Sasso, aimed at testing PEP-violating atomic transitions in lead. The experimental technique, relying on forming a new symmetry state by introducing electrons into the pre-existing electron system through a direct current, satisfies the conditions of the Messiah-Greenberg superselection rule. No PEP violation has been observed, and an upper limit on the PEP violation probability of ß 2 / 2 < 4.8 · 10 - 29 (90% CL) is set. This improves the previous constraint from a comparable measurement by more than one order of magnitude.

3.
Eur Phys J C Part Fields ; 78(4): 319, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29706795

RESUMO

The VIolation of Pauli exclusion principle -2 experiment, or VIP-2 experiment, at the Laboratori Nazionali del Gran Sasso searches for X-rays from copper atomic transitions that are prohibited by the Pauli exclusion principle. Candidate direct violation events come from the transition of a 2p electron to the ground state that is already occupied by two electrons. From the first data taking campaign in 2016 of VIP-2 experiment, we determined a best upper limit of [Formula: see text] for the probability that such a violation exists. Significant improvement in the control of the experimental systematics was also achieved, although not explicitly reflected in the improved upper limit. By introducing a simultaneous spectral fit of the signal and background data in the analysis, we succeeded in taking into account systematic errors that could not be evaluated previously in this type of measurements.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA