Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Am J Hum Genet ; 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-39013458

RESUMO

The shift to a genotype-first approach in genetic diagnostics has revolutionized our understanding of neurodevelopmental disorders, expanding both their molecular and phenotypic spectra. Kleefstra syndrome (KLEFS1) is caused by EHMT1 haploinsufficiency and exhibits broad clinical manifestations. EHMT1 encodes euchromatic histone methyltransferase-1-a pivotal component of the epigenetic machinery. We have recruited 209 individuals with a rare EHMT1 variant and performed comprehensive molecular in silico and in vitro testing alongside DNA methylation (DNAm) signature analysis for the identified variants. We (re)classified the variants as likely pathogenic/pathogenic (molecularly confirming Kleefstra syndrome) in 191 individuals. We provide an updated and broader clinical and molecular spectrum of Kleefstra syndrome, including individuals with normal intelligence and familial occurrence. Analysis of the EHMT1 variants reveals a broad range of molecular effects and their associated phenotypes, including distinct genotype-phenotype associations. Notably, we showed that disruption of the "reader" function of the ankyrin repeat domain by a protein altering variant (PAV) results in a KLEFS1-specific DNAm signature and milder phenotype, while disruption of only "writer" methyltransferase activity of the SET domain does not result in KLEFS1 DNAm signature or typical KLEFS1 phenotype. Similarly, N-terminal truncating variants result in a mild phenotype without the DNAm signature. We demonstrate how comprehensive variant analysis can provide insights into pathogenesis of the disorder and DNAm signature. In summary, this study presents a comprehensive overview of KLEFS1 and EHMT1, revealing its broader spectrum and deepening our understanding of its molecular mechanisms, thereby informing accurate variant interpretation, counseling, and clinical management.

2.
J Med Genet ; 60(2): 163-173, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35256403

RESUMO

BACKGROUND: Postzygotic activating PIK3CA variants cause several phenotypes within the PIK3CA-related overgrowth spectrum (PROS). Variant strength, mosaicism level, specific tissue involvement and overlapping disorders are responsible for disease heterogeneity. We explored these factors in 150 novel patients and in an expanded cohort of 1007 PIK3CA-mutated patients, analysing our new data with previous literature to give a comprehensive picture. METHODS: We performed ultradeep targeted next-generation sequencing (NGS) on DNA from skin biopsy, buccal swab or blood using a panel including phosphatidylinositol 3-kinase/AKT/mammalian target of rapamycin pathway genes and GNAQ, GNA11, RASA1 and TEK. Additionally, 914 patients previously reported were systematically reviewed. RESULTS: 93 of our 150 patients had PIK3CA pathogenetic variants. The merged PROS cohort showed that PIK3CA variants span thorough all gene domains, some were exclusively associated with specific PROS phenotypes: weakly activating variants were associated with central nervous system (CNS) involvement, and strongly activating variants with extra-CNS phenotypes. Among the 57 with a wild-type PIK3CA allele, 11 patients with overgrowth and vascular malformations overlapping PROS had variants in GNAQ, GNA11, RASA1 or TEK. CONCLUSION: We confirm that (1) molecular diagnostic yield increases when multiple tissues are tested and by enriching NGS panels with genes of overlapping 'vascular' phenotypes; (2) strongly activating PIK3CA variants are found in affected tissue, rarely in blood: conversely, weakly activating mutations more common in blood; (3) weakly activating variants correlate with CNS involvement, strong variants are more common in cases without; (4) patients with vascular malformations overlapping those of PROS can harbour variants in genes other than PIK3CA.


Assuntos
Malformações Vasculares , Humanos , Mutação/genética , Fenótipo , Genótipo , Classe I de Fosfatidilinositol 3-Quinases/genética , Malformações Vasculares/diagnóstico , Malformações Vasculares/genética , Proteína p120 Ativadora de GTPase/genética
3.
Hum Genet ; 142(6): 785-808, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37079061

RESUMO

Deleterious variants in collagen genes are the most common cause of hereditary connective tissue disorders (HCTD). Adaptations of the American College of Medical Genetics and Genomics/Association for Molecular Pathology (ACMG/AMP) criteria are still lacking. A multidisciplinary team was set up for developing specifications of the ACMG/AMP criteria for COL1A1, COL1A2, COL2A1, COL3A1, COL5A1, COL5A2, COL11A1, COL11A2 and COL12A1, associated with various forms of HCTD featuring joint hypermobility, which is becoming one of the most common reasons of referral for molecular testing in this field. Such specifications were validated against 209 variants, and resulted effective for classifying as pathogenic and likely pathogenic null alleles without downgrading of the PVS1 level of strength and recurrent Glycine substitutions. Adaptations of selected criteria reduced uncertainties on private Glycine substitutions, intronic variants predicted to affect the splicing, and null alleles with a downgraded PVS1 level of strength. Segregation and multigene panel sequencing data mitigated uncertainties on non-Glycine substitutions by the attribution of one or more benignity criteria. These specifications may improve the clinical utility of molecular testing in HCTD by reducing the number of variants with neutral/conflicting interpretations. Close interactions between laboratory and clinicians are crucial to estimate the a priori utility of molecular test and to improve medical reports.


Assuntos
Variação Genética , Instabilidade Articular , Humanos , Estados Unidos , Testes Genéticos/métodos , Instabilidade Articular/diagnóstico , Instabilidade Articular/genética , Análise de Sequência de DNA/métodos
4.
Genet Med ; 24(8): 1653-1663, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35511137

RESUMO

PURPOSE: Emerging evidence suggest that infection-dependent hyperactivation of complement system (CS) may worsen COVID-19 outcome. We investigated the role of predicted high impact rare variants - referred as qualifying variants (QVs) - of CS genes in predisposing asymptomatic COVID-19 in elderly individuals, known to be more susceptible to severe disease. METHODS: Exploiting exome sequencing data and 56 CS genes, we performed a gene-based collapsing test between 164 asymptomatic subjects (aged ≥60 years) and 56,885 European individuals from the Genome Aggregation Database. We replicated this test comparing the same asymptomatic individuals with 147 hospitalized patients with COVID-19. RESULTS: We found an enrichment of QVs in 3 genes (MASP1, COLEC11, and COLEC10), which belong to the lectin pathway, in the asymptomatic cohort. Analyses of complement activity in serum showed decreased activity of lectin pathway in asymptomatic individuals with QVs. Finally, we found allelic variants associated with asymptomatic COVID-19 phenotype and with a decreased expression of MASP1, COLEC11, and COLEC10 in lung tissue. CONCLUSION: This study suggests that genetic rare variants can protect from severe COVID-19 by mitigating the activity of lectin pathway and prothrombin. The genetic data obtained through ES of 786 asymptomatic and 147 hospitalized individuals are publicly available at http://espocovid.ceinge.unina.it/.


Assuntos
COVID-19 , Idoso , COVID-19/genética , Colectinas/genética , Colectinas/metabolismo , Células Germinativas , Humanos , Lectinas/genética , SARS-CoV-2 , Sequenciamento do Exoma
5.
Am J Med Genet A ; 188(6): 1836-1847, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35238482

RESUMO

Only a few patients with deletions or duplications at Xp11.4, bridging USP9X, DDX3X, and CASK genes, have been described so far. Here, we report on a female harboring a de novo Xp11.4p11.3 deletion and a male with an overlapping duplication inherited from an unaffected mother, presenting with syndromic intellectual disability. We discuss the role of USP9X, DDX3X, and CASK genes in human development and describe the effects of Xp11.4 deletion and duplications in female and male patients, respectively.


Assuntos
Deficiência Intelectual , Cromossomos Humanos X , RNA Helicases DEAD-box/genética , Feminino , Humanos , Deficiência Intelectual/genética , Masculino , Fenótipo , Ubiquitina Tiolesterase/genética
6.
Eur J Pediatr ; 181(1): 171-187, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34232366

RESUMO

Kabuki syndrome (KS) is a well-recognized disorder characterized by postnatal growth deficiency, dysmorphic facial features, skeletal anomalies, and intellectual disability. The syndrome is caused by KMT2D gene mutations or less frequently KDM6A gene mutations or deletions. We report a systematic evaluation of KS patients from Campania region of Italy; data were also compared with literature ones. We collected data of 15 subjects (8 males and 7 females with age range 10-26 years; mean age 16.9 years) with confirmed diagnosis of KS, representing the entire cohort of patients from Campania Region. Each patient performed biochemical testing and instrumental investigation. Neuro-intellectual development, cranio-facial dysmorphisms, and multisystem involvement data were collected retrospectively. For each category, type of defects and frequency of the anomalies were analyzed. Our observation shows that KS patients from Campania region have some particular and previously underscored, neurological and immunological findings. We found high prevalence of EEG's abnormalities (43%) and MRI brain abnormalities (60%). Microcephaly resulted more common in our series (33%), if compared with major cohorts described in literature. Biochemical features of immunodeficiency and autoimmune diseases including thyroid autoimmunity, polyserositis, and vitiligo were observed with high prevalence (54.5%). Low immunoglobulins levels were a frequent finding. Lymphocyte class investigation showed significantly reduced CD8 levels in one patient.Conclusions: These data confirm great heterogeneity of clinical manifestations in KS and suggest to introduce further clinical diagnostic criteria in order to perform a correct and precocious diagnosis. What is Known • Kabuki syndrome is characterized by growth deficiency, dysmorphic facial features, skeletal anomalies, and intellectual disability • Immune dysfunction is a common finding but autoimmune diseases are rarely seen • Neurological features are common What is New • Some particular facial features could help gestalt diagnosis (hypertelorism, broad nasal bridge, micrognathia, tooth agenesis, cutaneous haemangiomas and strabismus) • Higher prevalence of autoimmune disorders than previously reported • Particular neurological features are present in this cohort (EEG and MRI brain abnormalities).


Assuntos
Anormalidades Múltiplas , Doenças Hematológicas , Doenças Vestibulares , Anormalidades Múltiplas/diagnóstico , Anormalidades Múltiplas/epidemiologia , Anormalidades Múltiplas/genética , Adolescente , Adulto , Criança , Face/anormalidades , Feminino , Doenças Hematológicas/epidemiologia , Humanos , Masculino , Estudos Retrospectivos , Doenças Vestibulares/diagnóstico , Doenças Vestibulares/epidemiologia , Adulto Jovem
7.
Am J Med Genet A ; 185(4): 1204-1210, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33442900

RESUMO

Feingold Syndrome type 1 (FS1) is an autosomal dominant disorder due to a loss of function mutations in the MYCN gene. FS1 is generally clinically characterized by mild learning disability, microcephaly, short palpebral fissures, short stature, brachymesophalangy, hypoplastic thumbs, as well as syndactyly of toes, variably associated with organ abnormalities, the most common being gastrointestinal atresia. In current literature, more than 120 FS1 patients have been described, but diagnostic criteria are not well agreed upon, likewise the genotype-phenotype correlations are not well understood. Here, we describe 11 FS1 patients, belonging to six distinct families, where we have identified three novel MYCN mutations along with three pathogenetic variants, the latter which have already been reported. Several patients presented a mild phenotype of the condition and they have been diagnosed as being affected only after segregation analyses of the MYCN mutation identified in the propositus. We also describe here the first ever FS1 patient with severe intellectual disability having a maternally inherited MYCN variant together with an additional GNAO1 mutation inherited paternally. Mutations in the GNAO1 gene are associated with a specific form of intellectual disability and epilepsy, thus the finding of two different rare diseases in the same patient could explain his severe phenotype. Therein, a thorough investigation is merited into the possibility that additional variants in patients with a MYCN mutation and severe phenotype do exist. Finally, in order to guarantee a more reliable diagnosis of FS1, we suggest using both major and minor clinical-molecular diagnostic criteria.


Assuntos
Pálpebras/anormalidades , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/genética , Predisposição Genética para Doença , Deficiência Intelectual/genética , Deformidades Congênitas dos Membros/genética , Microcefalia/genética , Proteína Proto-Oncogênica N-Myc/genética , Fístula Traqueoesofágica/genética , Anormalidades Múltiplas/genética , Anormalidades Múltiplas/patologia , Adolescente , Criança , Pré-Escolar , Pálpebras/patologia , Feminino , Estudos de Associação Genética , Testes Genéticos , Genótipo , Humanos , Lactente , Recém-Nascido , Deficiência Intelectual/complicações , Deficiência Intelectual/patologia , Deformidades Congênitas dos Membros/complicações , Deformidades Congênitas dos Membros/patologia , Masculino , Microcefalia/complicações , Microcefalia/patologia , Fenótipo , Sindactilia/complicações , Sindactilia/genética , Sindactilia/patologia , Fístula Traqueoesofágica/complicações , Fístula Traqueoesofágica/patologia
8.
Int J Mol Sci ; 22(10)2021 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-34065289

RESUMO

Genome-wide association studies (GWAS) found locus 3p21.31 associated with severe COVID-19. CCR5 resides at the same locus and, given its known biological role in other infection diseases, we investigated if common noncoding and rare coding variants, affecting CCR5, can predispose to severe COVID-19. We combined single nucleotide polymorphisms (SNPs) that met the suggestive significance level (P ≤ 1 × 10-5) at the 3p21.31 locus in public GWAS datasets (6406 COVID-19 hospitalized patients and 902,088 controls) with gene expression data from 208 lung tissues, Hi-C, and Chip-seq data. Through whole exome sequencing (WES), we explored rare coding variants in 147 severe COVID-19 patients. We identified three SNPs (rs9845542, rs12639314, and rs35951367) associated with severe COVID-19 whose risk alleles correlated with low CCR5 expression in lung tissues. The rs35951367 resided in a CTFC binding site that interacts with CCR5 gene in lung tissues and was confirmed to be associated with severe COVID-19 in two independent datasets. We also identified a rare coding variant (rs34418657) associated with the risk of developing severe COVID-19. Our results suggest a biological role of CCR5 in the progression of COVID-19 as common and rare genetic variants can increase the risk of developing severe COVID-19 by affecting the functions of CCR5.


Assuntos
COVID-19/genética , COVID-19/metabolismo , Predisposição Genética para Doença , Receptores CCR5/genética , Receptores CCR5/metabolismo , Alelos , Brônquios/metabolismo , Brônquios/patologia , Brônquios/virologia , COVID-19/fisiopatologia , Cromossomos Humanos/genética , Estudos de Coortes , Biologia Computacional , Bases de Dados Genéticas , Estudo de Associação Genômica Ampla , Genótipo , Humanos , Pulmão/metabolismo , Pulmão/patologia , Pulmão/virologia , Polimorfismo de Nucleotídeo Único , Sequenciamento do Exoma
10.
Genet Med ; 21(4): 867-876, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30190611

RESUMO

PURPOSE: Neurofibromatosis type 1 (NF1) is characterized by a highly variable clinical presentation, but almost all NF1-affected adults present with cutaneous and/or subcutaneous neurofibromas. Exceptions are individuals heterozygous for the NF1 in-frame deletion, c.2970_2972del (p.Met992del), associated with a mild phenotype without any externally visible tumors. METHODS: A total of 135 individuals from 103 unrelated families, all carrying the constitutional NF1 p.Met992del pathogenic variant and clinically assessed using the same standardized phenotypic checklist form, were included in this study. RESULTS: None of the individuals had externally visible plexiform or histopathologically confirmed cutaneous or subcutaneous neurofibromas. We did not identify any complications, such as symptomatic optic pathway gliomas (OPGs) or symptomatic spinal neurofibromas; however, 4.8% of individuals had nonoptic brain tumors, mostly low-grade and asymptomatic, and 38.8% had cognitive impairment/learning disabilities. In an individual with the NF1 constitutional c.2970_2972del and three astrocytomas, we provided proof that all were NF1-associated tumors given loss of heterozygosity at three intragenic NF1 microsatellite markers and c.2970_2972del. CONCLUSION: We demonstrate that individuals with the NF1 p.Met992del pathogenic variant have a mild NF1 phenotype lacking clinically suspected plexiform, cutaneous, or subcutaneous neurofibromas. However, learning difficulties are clearly part of the phenotypic presentation in these individuals and will require specialized care.


Assuntos
Deficiências da Aprendizagem/genética , Neurofibroma Plexiforme/genética , Neurofibromatose 1/genética , Neurofibromina 1/genética , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Estudos de Associação Genética , Predisposição Genética para Doença , Heterozigoto , Humanos , Lactente , Deficiências da Aprendizagem/fisiopatologia , Masculino , Mutação de Sentido Incorreto/genética , Neurofibroma Plexiforme/fisiopatologia , Neurofibromatose 1/patologia , Deleção de Sequência , Adulto Jovem
11.
Children (Basel) ; 11(5)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38790536

RESUMO

Background: CACNA1C gene encodes the alpha 1 subunit of the CaV1.2 L-type Ca2+ channel. Pathogenic variants in this gene have been associated with cardiac rhythm disorders such as long QT syndrome, Brugada syndrome and Timothy syndrome. Recent evidence has suggested the possible association between CACNA1C mutations and neurologically-isolated (in absence of cardiac involvement) phenotypes in children, giving birth to a wider spectrum of CACNA1C-related clinical presentations. However, to date, little is known about the variety of both neurological and non-neurological signs/symptoms in the neurologically-predominant phenotypes. Methods and Results: We conducted a systematic review of neurologically-predominant presentations without cardiac conduction defects, associated with CACNA1C mutations. We also reported a novel de novo missense pathogenic variant in the CACNA1C gene of a children patient presenting with constructional, dressing and oro-buccal apraxia associated with behavioral abnormalities, mild intellectual disability, dental anomalies, gingival hyperplasia and mild musculoskeletal defects, without cardiac conduction defects. Conclusions: The present study highlights the importance of considering the investigation of the CACNA1C gene in children's neurological isolated syndromes, and expands the phenotype of the CACNA1C related conditions. In addition, the present study highlights that, even in absence of cardiac conduction defects, nuanced clinical manifestations of the Timothy syndrome (e.g., dental and gingival defects) could be found. These findings suggest the high variable expressivity of the CACNA1C gene and remark that the absence of cardiac involvement should not mislead the diagnosis of a CACNA1C related disorder.

12.
Genes (Basel) ; 15(1)2024 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-38275611

RESUMO

Cranio-lenticulo-sutural dysplasia (CLSD, OMIM #607812) is a rare genetic condition characterized by late-closing fontanels, skeletal defects, dysmorphisms, and congenital cataracts that are caused by bi-allelic or monoallelic variants in the SEC23A gene. Autosomal recessive inheritance (AR-CLSD) has been extensively documented in several cases with homozygous or compound heterozygous variants in SEC23A, whereas autosomal dominant inheritance (AD-CLSD) involving heterozygous inherited variants has been reported just in three patients. The SEC23A gene encodes for one of the main components of a protein coat complex known as coat-protein-complex II (COPII), responsible for the generation of the envelope of the vesicles exported from the endoplasmic reticulum (ER) toward the Golgi complex (GC). AR-CLSD and AD-CLSD exhibit common features, although each form also presents distinctive and peculiar characteristics. Herein, we describe a rare case of a 10-year-old boy with a history of an anterior fontanel that closed only at the age of 9. The patient presents with short proportionate stature, low weight, and neurological impairment, including intellectual disability, global developmental delay, abnormal coordination, dystonia, and motor tics, along with dysmorphisms such as a wide anterior fontanel, hypertelorism, frontal bossing, broad nose, high-arched palate, and micrognathia. Trio clinical exome was performed, and a de novo heterozygous missense variant in SEC23A (p.Arg716Cys) was identified. This is the first reported case of CLSD caused by a de novo heterozygous missense variant in SEC23A presenting specific neurological manifestations never described before. For the first time, we have conducted a comprehensive phenotype-genotype correlation using data from our patient and the eight most well-documented cases in the literature. Our work has allowed us to identify the main specific and characteristic signs of both forms of CLSD (AR-CLSD, AD CLSD), offering valuable insights that can guide physicians in the diagnostic process. Notably, detailed descriptions of neurological features such as intellectual disability, global developmental delay, and motor impairment have not been documented before. Furthermore, our literature overview is crucial in the current landscape of CLSD due to the absence of guidelines for the clinical diagnosis and proper follow-up of these patients, especially during childhood.


Assuntos
Deficiência Intelectual , Proteínas de Transporte Vesicular , Masculino , Humanos , Criança , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo , Deficiência Intelectual/genética , Deficiência Intelectual/metabolismo , Mutação de Sentido Incorreto , Retículo Endoplasmático/metabolismo , Complexo de Golgi/metabolismo
13.
Biomedicines ; 12(5)2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38791074

RESUMO

Inherited ichthyoses are a group of clinically and genetically heterogeneous rare disorders of skin keratinization with overlapping phenotypes. The clinical picture and family history are crucial to formulating the diagnostic hypothesis, but only the identification of the genetic defect allows the correct classification. In the attempt to molecularly classify 17 unrelated Italian patients referred with congenital nonsyndromic ichthyosis, we performed massively parallel sequencing of over 50 ichthyosis-related genes. Genetic data of 300 Italian unaffected subjects were also analyzed to evaluate frequencies of putative disease-causing alleles in our population. For all patients, we identified the molecular cause of the disease. Eight patients were affected by autosomal recessive congenital ichthyosis associated with ALOX12B, NIPAL4, and TGM1 mutations. Three patients had biallelic loss-of-function variants in FLG, whereas 6/11 males were affected by X-linked ichthyosis. Among the 24 different disease-causing alleles we identified, 8 carried novel variants, including a synonymous TGM1 variant that resulted in a splicing defect. Moreover, we generated a priority list of the ichthyosis-related genes that showed a significant number of rare and novel variants in our population. In conclusion, our comprehensive molecular analysis resulted in an effective first-tier test for the early classification of ichthyosis patients. It also expands the genetic, mutational, and phenotypic spectra of inherited ichthyosis and provides new insight into the current understanding of etiologies and epidemiology of this group of rare disorders.

14.
Genes (Basel) ; 14(5)2023 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-37239476

RESUMO

The implementation of array comparative genomic hybridisation (array-CGH) allows us to describe new microdeletion/microduplication syndromes which were previously not identified. 9q21.13 microdeletion syndrome is a genetic condition due to the loss of a critical genomic region of approximately 750kb and includes several genes, such as RORB and TRPM6. Here, we report a case of a 7-year-old boy affected by 9q21.13 microdeletion syndrome. He presents with global developmental delay, intellectual disability, autistic behaviour, seizures and facial dysmorphism. Moreover, he has severe myopia, which was previously reported in only another patient with 9q21.13 deletion, and brain anomalies which were never described before in 9q21.13 microdeletion syndrome. We also collect 17 patients from a literature search and 10 cases from DECIPHER database with a total number of 28 patients (including our case). In order to better investigate the four candidate genes RORB, TRPM6, PCSK5, and PRUNE2 for neurological phenotype, we make, for the first time, a classification in four groups of all the collected 28 patients. This classification is based both on the genomic position of the deletions included in the 9q21.3 locus deleted in our patient and on the different involvement of the four-candidate gene. In this way, we compare the clinical problems, the radiological findings, and the dysmorphic features of each group and of all the 28 patients in our article. Moreover, we perform the genotype-phenotype correlation of the 28 patients to better define the syndromic spectrum of 9q21.13 microdeletion syndrome. Finally, we propose a baseline ophthalmological and neurological monitoring of this syndrome.


Assuntos
Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Humanos , Masculino , Criança , Deficiências do Desenvolvimento/genética , Deleção Cromossômica , Deficiência Intelectual/genética , Transtornos do Neurodesenvolvimento/genética , Estudos de Associação Genética
15.
Artigo em Inglês | MEDLINE | ID: mdl-36847234

RESUMO

BACKGROUND: X-linked hypophosphatemia is the most prevalent form of heritable rickets, characterized by an X-linked dominant inheritance pattern. The genetic basis of X-linked hypophosphatemia is a loss-of-function mutation in the PHEX gene (Phosphate regulating gene with Homology to Endopeptidases on the X chromosome), which leads to an enhanced production of phosphaturic hormone FGF23. X-linked hypophosphatemia causes rickets in children and osteomalacia in adults. Clinical manifestations are numerous and variable, including slowdown in growth, swing-through gait and progressive tibial bowing, related to skeletal and extraskeletal actions of FGF23. PHEX gene spans over 220 kb and consists of 22 exons. To date, hereditary and sporadic mutations are known (missense, nonsense, deletions and splice site mutations). CASE PRESENTATION: Herein, we describe a male patient carrying a novel de novo mosaic nonsense mutation c.2176G>T (p.Glu726Ter) located in exon 22 of PHEX gene. CONCLUSION: We highlight this new mutation among possible causative of X-linked hypophosphatemia and suggest that mosaicism of PHEX mutations is not so uncommon and should be excluded in diagnostic workflow of heritable rickets both in male and female patients.


Assuntos
Raquitismo Hipofosfatêmico Familiar , Raquitismo Hipofosfatêmico , Criança , Adulto , Humanos , Masculino , Feminino , Raquitismo Hipofosfatêmico Familiar/diagnóstico , Raquitismo Hipofosfatêmico Familiar/genética , Endopeptidase Neutra Reguladora de Fosfato PHEX/genética , Raquitismo Hipofosfatêmico/diagnóstico , Raquitismo Hipofosfatêmico/genética , Mutação , Éxons/genética
16.
Genes (Basel) ; 14(1)2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36672860

RESUMO

Cornelia de Lange Syndrome (CdLS) is a rare genetic disorder that affects many organs. The diagnosis of this condition is primarily clinical and it can be confirmed by molecular analysis of the genes known to cause this disease, although about 30% of CdLS patients are without a genetic diagnosis. Here we report clinical and genetic findings of a patient with CdLS type 4, a syndrome of which the clinical features of only 30 patients have been previously described in the literature. The index patient presented with clinical characteristics previously associated with CdLS type 4 (short nose, thick eyebrow, global development delay, synophrys, microcephaly, weight < 2DS, small hands, height < 2DS). She also presented cardiac anomalies, cleft palate and laryngomalacia, which was never described before. The index patient was diagnosed with a novel de novo RAD21 variant (c.1722_1723delTG, p.Gly575SerfsTer2): segregation analysis, bioinformatic analysis, population data and in silico structural modelling indicate the pathogenicity of the novel variant. This report summarizes previously reported clinical manifestations of CdLS type 4 but also highlights new clinical symptoms, which will aid correct counselling of future CdLS type 4 cases.


Assuntos
Fissura Palatina , Síndrome de Cornélia de Lange , Hipertricose , Feminino , Humanos , Síndrome de Cornélia de Lange/diagnóstico , Síndrome de Cornélia de Lange/genética , Proteínas de Ciclo Celular/genética , Fenótipo , Proteínas de Ligação a DNA/genética
17.
Pediatr Rep ; 14(1): 131-139, 2022 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-35324822

RESUMO

Diagnosis of pediatric intellectual disability (ID) can be difficult because it is due to a vast number of established and novel causes. Here, we described a full-term female infant affected by Kleefstra syndrome-2 presenting with neurodevelopmental disorder, a history of hypotonia and minor face anomalies. A systematic literature review was also performed. The patient was a 6-year-old Caucasian female. In the family history there was no intellectual disability or genetic conditions. Auxological parameters at birth were adequate for gestational age. Clinical evaluation at 6 months revealed hypotonia and, successively, delay in the acquisition of the stages of psychomotor development. Auditory, visual, somatosensory, and motor-evoked potentials were normal. A brain MRI, performed at 9 months, showed minimal gliotic changes in bilateral occipital periventricular white matter. Neuropsychiatric control, performed at 5 years, established a definitive diagnosis of childhood autism and developmental delay. Molecular analysis of the exome revealed a novel KMT2C missense variant: c.9244C > T (p.Pro3082Ser) at a heterozygous state, giving her a diagnosis of Kleefstra syndrome 2. Parents did not show the variant. Literature review (four retrieved eligible studies, 10 patients) showed that all individuals had mild, moderate, or severe ID; language and motor delay; and autism. Short stature, microcephaly, childhood hypotonia and plagiocephaly were also present. Conclusion. Kleefstra syndrome 2 is a difficult diagnosis of a rare condition with a high clinical phenotypic heterogeneity. This study suggests that it must be taken in account in the work-up of an orphan diagnosis of intellectual disability and/or autism spectrum disorder.

18.
Front Genet ; 13: 924362, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35910214

RESUMO

Fibrillin proteins are extracellular matrix glycoproteins assembling into microfibrils. FBN1, FBN2, and FBN3 encode the human fibrillins and mutations in FBN1 and FBN2 cause connective tissue disorders called fibrillinopathies, affecting cardiovascular, dermal, skeletal, and ocular tissues. Recently, mutations of the less characterized fibrillin family member, FBN3, have been associated in a single family with Bardet-Biedl syndrome (BBS). Here, we report on a patient born from two first cousins and affected by developmental delay, cognitive impairment, obesity, dental and genital anomalies, and brachydactyly/syndactyly. His phenotype was very similar to that reported in the previous FBN3-mutated family and fulfilled BBS clinical diagnostic criteria, although lacking polydactyly, the most recurrent clinical feature, as the previous siblings described. A familial SNP-array and proband's WES were performed prioritizing candidate variants on the sole patient's runs of homozygosity. This analysis disclosed a novel homozygous missense variant in FBN3 (NM_032447:c.5434A>G; NP_115823:p.Ile1812Val; rs115948457), inherited from the heterozygous parents. This study further supports that FBN3 is a candidate gene for a BBS-like syndrome characterized by developmental delay, cognitive impairment, obesity, dental, genital, and skeletal anomalies. Anyway, additional studies are necessary to investigate the exact role of the gene and possible interactions between FBN3 and BBS proteins.

19.
Clin Epigenetics ; 14(1): 71, 2022 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-35643636

RESUMO

BACKGROUND: Beckwith-Wiedemann syndrome (BWS) and Pseudohypoparathyroidism type 1B (PHP1B) are imprinting disorders (ID) caused by deregulation of the imprinted gene clusters located at 11p15.5 and 20q13.32, respectively. In both of these diseases a subset of the patients is affected by multi-locus imprinting disturbances (MLID). In several families, MLID is associated with damaging variants of maternal-effect genes encoding protein components of the subcortical maternal complex (SCMC). However, frequency, penetrance and recurrence risks of these variants are still undefined. In this study, we screened two cohorts of BWS patients and one cohort of PHP1B patients for the presence of MLID, and analysed the positive cases for the presence of maternal variants in the SCMC genes by whole exome-sequencing and in silico functional studies. RESULTS: We identified 10 new cases of MLID associated with the clinical features of either BWS or PHP1B, in which segregate 13 maternal putatively damaging missense variants of the SCMC genes. The affected genes also included KHDC3L that has not been associated with MLID to date. Moreover, we highlight the possible relevance of relatively common variants in the aetiology of MLID. CONCLUSION: Our data further add to the list of the SCMC components and maternal variants that are involved in MLID, as well as of the associated clinical phenotypes. Also, we propose that in addition to rare variants, common variants may play a role in the aetiology of MLID and imprinting disorders by exerting an additive effect in combination with rarer putatively damaging variants. These findings provide useful information for the molecular diagnosis and recurrence risk evaluation of MLID-associated IDs in genetic counselling.


Assuntos
Síndrome de Beckwith-Wiedemann , Pseudo-Hipoparatireoidismo , Síndrome de Beckwith-Wiedemann/diagnóstico , Síndrome de Beckwith-Wiedemann/genética , Metilação de DNA , Impressão Genômica , Humanos , Proteínas/genética , Pseudo-Hipoparatireoidismo/genética , Pseudo-Hipoparatireoidismo
20.
Viruses ; 14(6)2022 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-35746657

RESUMO

Thrombosis of small and large vessels is reported as a key player in COVID-19 severity. However, host genetic determinants of this susceptibility are still unclear. Congenital Thrombotic Thrombocytopenic Purpura is a severe autosomal recessive disorder characterized by uncleaved ultra-large vWF and thrombotic microangiopathy, frequently triggered by infections. Carriers are reported to be asymptomatic. Exome analysis of about 3000 SARS-CoV-2 infected subjects of different severities, belonging to the GEN-COVID cohort, revealed the specific role of vWF cleaving enzyme ADAMTS13 (A disintegrin-like and metalloprotease with thrombospondin type 1 motif, 13). We report here that ultra-rare variants in a heterozygous state lead to a rare form of COVID-19 characterized by hyper-inflammation signs, which segregates in families as an autosomal dominant disorder conditioned by SARS-CoV-2 infection, sex, and age. This has clinical relevance due to the availability of drugs such as Caplacizumab, which inhibits vWF-platelet interaction, and Crizanlizumab, which, by inhibiting P-selectin binding to its ligands, prevents leukocyte recruitment and platelet aggregation at the site of vascular damage.


Assuntos
COVID-19 , Púrpura Trombocitopênica Trombótica , Proteínas ADAM/genética , Proteínas ADAM/metabolismo , Proteína ADAMTS13/genética , COVID-19/genética , Humanos , Púrpura Trombocitopênica Trombótica/diagnóstico , Púrpura Trombocitopênica Trombótica/genética , SARS-CoV-2/patogenicidade , Fator de von Willebrand/química , Fator de von Willebrand/genética , Fator de von Willebrand/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA