RESUMO
OBJECTIVE: Mucinous ovarian carcinoma (MOC) is a rare histotype of ovarian cancer, with low response rates to standard chemotherapy, and very poor survival for patients diagnosed at advanced stage. There is a limited understanding of the MOC immune landscape, and consequently whether immune checkpoint inhibitors could be considered for a subset of patients. METHODS: We performed multicolor immunohistochemistry (IHC) and immunofluorescence (IF) on tissue microarrays in a cohort of 126 MOC patients. Cell densities were calculated in the epithelial and stromal components for tumor-associated macrophages (CD68+/PD-L1+, CD68+/PD-L1-), T cells (CD3+/CD8-, CD3+/CD8+), putative T-regulatory cells (Tregs, FOXP3+), B cells (CD20+/CD79A+), plasma cells (CD20-/CD79a+), and PD-L1+ and PD-1+ cells, and compared these values with clinical factors. Univariate and multivariable Cox Proportional Hazards assessed overall survival. Unsupervised k-means clustering identified patient subsets with common patterns of immune cell infiltration. RESULTS: Mean densities of PD1+ cells, PD-L1- macrophages, CD4+ and CD8+ T cells, and FOXP3+ Tregs were higher in the stroma compared to the epithelium. Tumors from advanced (Stage III/IV) MOC had greater epithelial infiltration of PD-L1- macrophages, and fewer PD-L1+ macrophages compared with Stage I/II cancers (p = 0.004 and p = 0.014 respectively). Patients with high epithelial density of FOXP3+ cells, CD8+/FOXP3+ cells, or PD-L1- macrophages, had poorer survival, and high epithelial CD79a + plasma cells conferred better survival, all upon univariate analysis only. Clustering showed that most MOC (86%) had an immune depleted (cold) phenotype, with only a small proportion (11/76,14%) considered immune inflamed (hot) based on T cell and PD-L1 infiltrates. CONCLUSION: In summary, MOCs are mostly immunogenically 'cold', suggesting they may have limited response to current immunotherapies.
Assuntos
Antígeno B7-H1 , Neoplasias Ovarianas , Humanos , Feminino , Antígeno B7-H1/genética , Carcinoma Epitelial do Ovário/patologia , Neoplasias Ovarianas/tratamento farmacológico , Linfócitos T CD8-Positivos , Fatores de Transcrição Forkhead/uso terapêutico , Linfócitos do Interstício Tumoral , Microambiente TumoralRESUMO
PTEN plays a central role in the pathogenesis of endometrial carcinoma. Previous studies reported a high interobserver reproducibility for the interpretation of PTEN immunohistochemistry (IHC). However, PTEN IHC and its interpretation remain challenging during laboratory practice. The purpose of this study was to reevaluate PTEN IHC pattern in direct comparison to next-generation sequencing in identifying PTEN abnormality. IHC and tagged-amplicon next-generation sequencing PTEN sequencing was performed on 182 endometrial carcinoma biopsy/curetting samples from five centers (Barts, Calgary, Cambridge, Leiden, and Vancouver). Sensitivity, specificity and accuracy of PTEN IHC to predict loss of function PTEN mutations were calculated. Abnormalities of PTEN in association with histotype and molecular subtype were assessed. A total of 5 PTEN IHC patterns were recorded: absent, subclonal loss, equivocal, reduced (relative to internal control) and retained. The absence of PTEN IHC has a sensitivity of 75.4% (95% confidence interval: 62.7-85.5%), a specificity of 84.6% (95% confidence interval: 76.2%-90.9%), and accuracy of 81.2% (95% confidence interval: 74.4%-86.9%) in predicting loss of function PTEN mutation. PTEN abnormality by complementary interpretation of both assays was present in 91.9% of endometrial endometrioid carcinoma, grade 1, and significantly higher in endometrial endometrioid carcinomas of all grades compared with endometrial serous carcinoma (80.0% vs. 19.4%, P<0.0001). PTEN abnormalities are common across all molecular subtypes of endometrioid carcinomas. Our data support the use of ancillary PTEN IHC for diagnostic purposes in endometrial neoplasms. However, for clinical trial design complementary testing of both IHC and sequencing of PTEN should be considered to assess the PTEN status in endometrial carcinomas.
Assuntos
Carcinoma Endometrioide/diagnóstico , Neoplasias do Endométrio/diagnóstico , PTEN Fosfo-Hidrolase/genética , Biópsia , Carcinoma Endometrioide/metabolismo , Carcinoma Endometrioide/patologia , Estudos de Coortes , Neoplasias do Endométrio/metabolismo , Neoplasias do Endométrio/patologia , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Imuno-Histoquímica , Mutação com Perda de Função , Tipagem Molecular , Mutação , Gradação de Tumores , PTEN Fosfo-Hidrolase/metabolismo , Reprodutibilidade dos Testes , Análise de Sequência de DNARESUMO
PURPOSE: The known epithelial ovarian cancer (EOC) susceptibility genes account for less than 50% of the heritable risk of ovarian cancer suggesting that other susceptibility genes exist. The aim of this study was to evaluate the contribution to ovarian cancer susceptibility of rare deleterious germline variants in a set of candidate genes. METHODS: We sequenced the coding region of 54 candidate genes in 6385 invasive EOC cases and 6115 controls of broad European ancestry. Genes with an increased frequency of putative deleterious variants in cases versus controls were further examined in an independent set of 14 135 EOC cases and 28 655 controls from the Ovarian Cancer Association Consortium and the UK Biobank. For each gene, we estimated the EOC risks and evaluated associations between germline variant status and clinical characteristics. RESULTS: The ORs associated for high-grade serous ovarian cancer were 3.01 for PALB2 (95% CI 1.59 to 5.68; p=0.00068), 1.99 for POLK (95% CI 1.15 to 3.43; p=0.014) and 4.07 for SLX4 (95% CI 1.34 to 12.4; p=0.013). Deleterious mutations in FBXO10 were associated with a reduced risk of disease (OR 0.27, 95% CI 0.07 to 1.00, p=0.049). However, based on the Bayes false discovery probability, only the association for PALB2 in high-grade serous ovarian cancer is likely to represent a true positive. CONCLUSIONS: We have found strong evidence that carriers of PALB2 deleterious mutations are at increased risk of high-grade serous ovarian cancer. Whether the magnitude of risk is sufficiently high to warrant the inclusion of PALB2 in cancer gene panels for ovarian cancer risk testing is unclear; much larger sample sizes will be needed to provide sufficiently precise estimates for clinical counselling.
Assuntos
Proteína do Grupo de Complementação N da Anemia de Fanconi/genética , Predisposição Genética para Doença , Neoplasias Ovarianas/genética , Estudos de Casos e Controles , Feminino , Variação Genética , Humanos , Medição de RiscoRESUMO
TP53 mutations are considered a surrogate biomarker of the serous-like 'copy number high' molecular subtype of endometrial carcinoma (EC). In ovarian carcinoma, p53 immunohistochemistry (IHC) accurately reflects mutational status with almost 100% specificity but its performance in EC has not been established. This study tested whether p53 IHC reliably predicts TP53 mutations identified by next-generation sequencing (NGS) in EC biopsy samples for all ECs and as part of a molecular classification algorithm after exclusion of cases harbouring mismatch repair defects (MMRd) or pathogenic DNA polymerase epsilon exonuclease domain mutations (POLEmut). A secondary aim assessed inter-laboratory variability in p53 IHC. From a total of 207 cases from five centres (37-49 cases per centre), p53 IHC carried out at a central reference laboratory was compared with local IHC (n = 164) and curated tagged-amplicon NGS TP53 sequencing results (n = 177). Following consensus review, local and central p53 IHC results were concordant in 156/164 (95.1%) tumours. Discordant results were attributable to both interpretive and technical differences in staining between the local and central laboratories. When results were considered as any mutant pattern versus wild-type pattern staining, however, there was disagreement between local and central review in only one case. The concordance between p53 IHC and TP53 mutation was 155/168 (92.3%) overall, and 117/123 (95.1%) after excluding MMRd and POLEmut EC. Three (3/6) discordant results were in serous carcinomas with complete absence of p53 staining but no detectable TP53 mutation. Subclonal mutant p53 IHC expression was observed in 9/177 (5.1%) cases, of which four were either MMRd or POLEmut. Mutant pattern p53 IHC was observed in 63/63 (100%) serous carcinomas that were MMR-proficient/POLE exonuclease domain wild-type. Optimised p53 IHC performs well as a surrogate test for TP53 mutation in EC biopsies, demonstrates excellent inter-laboratory reproducibility, and has high clinical utility for molecular classification algorithms in EC. © 2019 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Assuntos
Carcinoma Endometrioide/metabolismo , Cistadenocarcinoma Seroso/metabolismo , Neoplasias do Endométrio/metabolismo , Imuno-Histoquímica , Mutação , Proteína Supressora de Tumor p53/metabolismo , Carcinoma Endometrioide/genética , Carcinoma Endometrioide/patologia , Cistadenocarcinoma Seroso/genética , Cistadenocarcinoma Seroso/patologia , Análise Mutacional de DNA , Neoplasias do Endométrio/genética , Neoplasias do Endométrio/patologia , Feminino , Humanos , Proteína Supressora de Tumor p53/genéticaRESUMO
BACKGROUND: In colorectal and breast cancer, the density and localisation of immune infiltrates provides strong prognostic information. We asked whether similar automated quantitation and combined analysis of immune infiltrates could refine prognostic information in high-grade serous ovarian carcinoma (HGSOC) and tested associations between patterns of immune response and genomic driver alterations. METHODS: Epithelium and stroma were semi-automatically segmented and the infiltration of CD45RO+, CD8+ and CD68+ cells was automatically quantified from images of 332 HGSOC patient tissue microarray cores. RESULTS: Epithelial CD8 [p = 0.027, hazard ratio (HR) = 0.83], stromal CD68 (p = 3 × 10-4, HR = 0.44) and stromal CD45RO (p = 7 × 10-4, HR = 0.76) were positively associated with survival and remained so when averaged across the tumour and stromal compartments. Using principal component analysis, we identified optimised multiparameter survival models combining information from all immune markers (p = 0.016, HR = 0.88). There was no significant association between PTEN expression, type of TP53 mutation or presence of BRCA1/BRCA2 mutations and immune infiltrate densities or principal components. CONCLUSIONS: Combining measures of immune infiltration provided improved survival modelling and evidence for the multiple effects of different immune factors on survival. The presence of stromal CD68+ and CD45RO+ populations was associated with survival, underscoring the benefits evaluating stromal immune populations may bring for prognostic immunoscores in HGSOC.
Assuntos
Cistadenocarcinoma Seroso/imunologia , Linfócitos do Interstício Tumoral/imunologia , Neoplasias Ovarianas/imunologia , Cistadenocarcinoma Seroso/mortalidade , Cistadenocarcinoma Seroso/patologia , Feminino , Humanos , Neoplasias Ovarianas/mortalidade , Neoplasias Ovarianas/patologia , Prognóstico , Microambiente Tumoral/imunologiaRESUMO
Cancers acquire resistance to systemic treatment as a result of clonal evolution and selection. Repeat biopsies to study genomic evolution as a result of therapy are difficult, invasive and may be confounded by intra-tumour heterogeneity. Recent studies have shown that genomic alterations in solid cancers can be characterized by massively parallel sequencing of circulating cell-free tumour DNA released from cancer cells into plasma, representing a non-invasive liquid biopsy. Here we report sequencing of cancer exomes in serial plasma samples to track genomic evolution of metastatic cancers in response to therapy. Six patients with advanced breast, ovarian and lung cancers were followed over 1-2 years. For each case, exome sequencing was performed on 2-5 plasma samples (19 in total) spanning multiple courses of treatment, at selected time points when the allele fraction of tumour mutations in plasma was high, allowing improved sensitivity. For two cases, synchronous biopsies were also analysed, confirming genome-wide representation of the tumour genome in plasma. Quantification of allele fractions in plasma identified increased representation of mutant alleles in association with emergence of therapy resistance. These included an activating mutation in PIK3CA (phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit alpha) following treatment with paclitaxel; a truncating mutation in RB1 (retinoblastoma 1) following treatment with cisplatin; a truncating mutation in MED1 (mediator complex subunit 1) following treatment with tamoxifen and trastuzumab, and following subsequent treatment with lapatinib, a splicing mutation in GAS6 (growth arrest-specific 6) in the same patient; and a resistance-conferring mutation in EGFR (epidermal growth factor receptor; T790M) following treatment with gefitinib. These results establish proof of principle that exome-wide analysis of circulating tumour DNA could complement current invasive biopsy approaches to identify mutations associated with acquired drug resistance in advanced cancers. Serial analysis of cancer genomes in plasma constitutes a new paradigm for the study of clonal evolution in human cancers.
Assuntos
Antineoplásicos/uso terapêutico , DNA de Neoplasias/análise , DNA de Neoplasias/genética , Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias/tratamento farmacológico , Neoplasias/genética , Plasma/química , Alelos , Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Classe I de Fosfatidilinositol 3-Quinases , Análise Mutacional de DNA , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Receptores ErbB/genética , Evolução Molecular , Exoma/genética , Feminino , Genoma Humano/genética , Genômica , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Subunidade 1 do Complexo Mediador/genética , Neoplasias/patologia , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Fosfatidilinositol 3-Quinases/genética , Proteína do Retinoblastoma/genéticaRESUMO
BACKGROUND: Circulating tumour DNA (ctDNA) carrying tumour-specific sequence alterations may provide a minimally invasive means to dynamically assess tumour burden and response to treatment in cancer patients. Somatic TP53 mutations are a defining feature of high-grade serous ovarian carcinoma (HGSOC). We tested whether these mutations could be used as personalised markers to monitor tumour burden and early changes as a predictor of response and time to progression (TTP). METHODS AND FINDINGS: We performed a retrospective analysis of serial plasma samples collected during routine clinical visits from 40 patients with HGSOC undergoing heterogeneous standard of care treatment. Patient-specific TP53 assays were developed for 31 unique mutations identified in formalin-fixed paraffin-embedded tumour DNA from these patients. These assays were used to quantify ctDNA in 318 plasma samples using microfluidic digital PCR. The TP53 mutant allele fraction (TP53MAF) was compared to serum CA-125, the current gold-standard response marker for HGSOC in blood, as well as to disease volume on computed tomography scans by volumetric analysis. Changes after one cycle of treatment were compared with TTP. The median TP53MAF prior to treatment in 51 relapsed treatment courses was 8% (interquartile range [IQR] 1.2%-22%) compared to 0.7% (IQR 0.3%-2.0%) for seven untreated newly diagnosed stage IIIC/IV patients. TP53MAF correlated with volumetric measurements (Pearson r = 0.59, p < 0.001), and this correlation improved when patients with ascites were excluded (r = 0.82). The ratio of TP53MAF to volume of disease was higher in relapsed patients (0.04% per cm3) than in untreated patients (0.0008% per cm3, p = 0.004). In nearly all relapsed patients with disease volume > 32 cm3, ctDNA was detected at ≥20 amplifiable copies per millilitre of plasma. In 49 treatment courses for relapsed disease, pre-treatment TP53MAF concentration, but not CA-125, was associated with TTP. Response to chemotherapy was seen earlier with ctDNA, with a median time to nadir of 37 d (IQR 28-54) compared with a median time to nadir of 84 d (IQR 42-116) for CA-125. In 32 relapsed treatment courses evaluable for response after one cycle of chemotherapy, a decrease in TP53MAF of >60% was an independent predictor of TTP in multivariable analysis (hazard ratio 0.22, 95% CI 0.07-0.67, p = 0.008). Conversely, a decrease in TP53MAF of ≤60% was associated with poor response and identified cases with TTP < 6 mo with 71% sensitivity (95% CI 42%-92%) and 88% specificity (95% CI 64%-99%). Specificity was improved when patients with recent drainage of ascites were excluded. Ascites drainage led to a reduction of TP53MAF concentration. The limitations of this study include retrospective design, small sample size, and heterogeneity of treatment within the cohort. CONCLUSIONS: In this retrospective study, we demonstrated that ctDNA is correlated with volume of disease at the start of treatment in women with HGSOC and that a decrease of ≤60% in TP53MAF after one cycle of chemotherapy was associated with shorter TTP. These results provide evidence that ctDNA has the potential to be a highly specific early molecular response marker in HGSOC and warrants further investigation in larger cohorts receiving uniform treatment.
Assuntos
Carcinoma/sangue , Carcinoma/genética , DNA de Neoplasias/sangue , DNA de Neoplasias/genética , Neoplasias Ovarianas/sangue , Neoplasias Ovarianas/genética , Proteína Supressora de Tumor p53/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais/sangue , Carcinoma/metabolismo , Feminino , Humanos , Pessoa de Meia-Idade , Mutação , Células Neoplásicas Circulantes/metabolismo , Neoplasias Ovarianas/metabolismo , Estudos Retrospectivos , Proteína Supressora de Tumor p53/metabolismoRESUMO
The Canadian Immunohistochemistry Quality Control provides proficiency testing for immunohistochemistry in Canadian laboratories. Canadian Immunohistochemistry Quality Control Run 42 assessed WT1, Napsin A, and p53; commonly used markers for histotyping ovarian carcinomas. A 42-core tissue microarray, which included the 5 major histotypes of ovarian carcinomas with a subset having known TP53 mutational status, was used for this Canadian Immunohistochemistry Quality Control challenge. Participants included 43 laboratories for p53, 29 for WT1, and 26 for Napsin A. p53 was scored as aberrant if the staining was strong and diffuse or absent. Napsin A and WT1 were scored positive if any tumor cells stained. The reference p53 expression pattern was inferred by TP53 mutation type when available. For WT1, Napsin A, and cases lacking mutational data, the reference staining pattern was based on the majority staining result. The error rate for p53 was 8.8%. Most errors (84%) were due to weak staining. The sensitivity and specificity of aberrant p53 expression for an underlying TP53 mutation was 91.6% and 87.9%, respectively. The error rate for WT1 was 0.76% with all errors occurring in laboratories using the 6F-h2 clone. The average errors for laboratories using 6F-h2 were 2.4 compared with 0 for WT-49. The error rate for Napsin A was 4%. The average errors for laboratories using polyclonal Napsin A were 3 compared with 1.1 for monoclonal Napsin A. Weak p53 staining increases interpretative errors, primarily due to absence of staining in tumors with wild-type TP53. p53 immunohistochemistry correlates strongly with TP53 mutational status. Polyclonal Napsin A and 6F-h2 may lack specificity in comparison to monoclonal Napsin A and WT-49.
Assuntos
Biomarcadores Tumorais/metabolismo , Carcinoma/classificação , Neoplasias Ovarianas/classificação , Ácido Aspártico Endopeptidases/metabolismo , Biomarcadores Tumorais/genética , Calibragem , Canadá , Carcinoma/genética , Carcinoma/metabolismo , Carcinoma/patologia , Feminino , Histologia , Humanos , Imuno-Histoquímica , Ensaio de Proficiência Laboratorial , Mutação , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Controle de Qualidade , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Proteínas WT1/metabolismoRESUMO
BACKGROUND: The major clinical challenge in the treatment of high-grade serous ovarian cancer (HGSOC) is the development of progressive resistance to platinum-based chemotherapy. The objective of this study was to determine whether intra-tumour genetic heterogeneity resulting from clonal evolution and the emergence of subclonal tumour populations in HGSOC was associated with the development of resistant disease. METHODS AND FINDINGS: Evolutionary inference and phylogenetic quantification of heterogeneity was performed using the MEDICC algorithm on high-resolution whole genome copy number profiles and selected genome-wide sequencing of 135 spatially and temporally separated samples from 14 patients with HGSOC who received platinum-based chemotherapy. Samples were obtained from the clinical CTCR-OV03/04 studies, and patients were enrolled between 20 July 2007 and 22 October 2009. Median follow-up of the cohort was 31 mo (interquartile range 22-46 mo), censored after 26 October 2013. Outcome measures were overall survival (OS) and progression-free survival (PFS). There were marked differences in the degree of clonal expansion (CE) between patients (median 0.74, interquartile range 0.66-1.15), and dichotimization by median CE showed worse survival in CE-high cases (PFS 12.7 versus 10.1 mo, p = 0.009; OS 42.6 versus 23.5 mo, p = 0.003). Bootstrap analysis with resampling showed that the 95% confidence intervals for the hazard ratios for PFS and OS in the CE-high group were greater than 1.0. These data support a relationship between heterogeneity and survival but do not precisely determine its effect size. Relapsed tissue was available for two patients in the CE-high group, and phylogenetic analysis showed that the prevalent clonal population at clinical recurrence arose from early divergence events. A subclonal population marked by a NF1 deletion showed a progressive increase in tumour allele fraction during chemotherapy. CONCLUSIONS: This study demonstrates that quantitative measures of intra-tumour heterogeneity may have predictive value for survival after chemotherapy treatment in HGSOC. Subclonal tumour populations are present in pre-treatment biopsies in HGSOC and can undergo expansion during chemotherapy, causing clinical relapse.
Assuntos
Alelos , DNA de Neoplasias , Resistencia a Medicamentos Antineoplásicos , Variação Genética , Neoplasias Epiteliais e Glandulares/genética , Neoplasias Ovarianas/genética , Filogenia , Platina/uso terapêutico , Idoso , Algoritmos , Carcinoma Epitelial do Ovário , Intervalo Livre de Doença , Feminino , Humanos , Pessoa de Meia-Idade , Neoplasias Epiteliais e Glandulares/tratamento farmacológico , Neoplasias Epiteliais e Glandulares/mortalidade , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/mortalidadeRESUMO
INTRODUCTION: Approximately 55% of women in Europe die from cardiovascular events, mostly as a result of coronary diseases and cerebral stroke. There is a 10-year shift in the cardiovascular risk between women and men. The risk in a 55-year-old female patient is similar to that of a 45-year-old man, thus the risk among women increases rapidly around the age of 50, when menopause prevails to occur. The purpose of the study was to assess and compare the SCORE-predicted risk of a fatal cardiovascular incident in pre- and postmenopausal women. MATERIAL AND METHODS: The cross-sectional study was conducted as part of community nursing practice. It covered 219 women - inhabitants of Krakow, aged from 30 to 65, without clinically validated cardiovascular diseases of arteriosclerotic and/or diabetic origin, who volunteered to take part in the study. The group was divided into three subgroups: K1 - menstruating women (n = 113), K2a - women after natural menopause (n = 88), and K2b - women after surgical menopause (n = 18). The study made use of a lifestyle questionnaire, which concerned the social and economic status, and lifestyle habits including tobacco smoking. Arterial blood pressure was measured, and total cholesterol concentration in blood (mmol/l) was recorded. RESULTS: A high (≥ 5%) level of the SCORE risk was discovered in 14.3% of postmenopausal women, as compared to 0.9% in the group of menstruating women. An average risk of a fatal cardiovascular incident during the following 10 years was significantly higher among women from groups K2a (2.61%) and K2b (2.32%) as compared to K1 - menstruating women (0.38%). No difference was, however, discovered between groups of naturally (K2a) and surgically menopausal women (K2b). CONCLUSIONS: A significantly higher risk of SCORE-predicted death caused by a cardiovascular incident, as compared to the group of women in the premenopausal period, is characteristic of women in the postmenopausal period.
RESUMO
Cancer cells often exhibit DNA copy number aberrations and can vary widely in their ploidy. Correct estimation of the ploidy of single-cell genomes is paramount for downstream analysis. Based only on single-cell DNA sequencing information, scAbsolute achieves accurate and unbiased measurement of single-cell ploidy and replication status, including whole-genome duplications. We demonstrate scAbsolute's capabilities using experimental cell multiplets, a FUCCI cell cycle expression system, and a benchmark against state-of-the-art methods. scAbsolute provides a robust foundation for single-cell DNA sequencing analysis across different technologies and has the potential to enable improvements in a number of downstream analyses.
Assuntos
Benchmarking , Ploidias , Ciclo Celular/genética , Divisão Celular , Análise de Sequência de DNARESUMO
Single-nuclei RNA sequencing (snRNA-seq) allows for obtaining gene expression profiles from frozen or hard-to-dissociate tissues at the single-nuclei level. Here, we describe a protocol to obtain snRNA-seq data of pancreatic tumors from orthotopically grafted organoid-derived mouse models. We provide details on the establishment of these mouse models, the isolation of single nuclei from pancreatic tumors, and the analysis of the snRNA-seq datasets. For complete details on the use and execution of this protocol, please refer to Mucciolo et al.1.
Assuntos
Organoides , Neoplasias Pancreáticas , Análise de Sequência de RNA , Microambiente Tumoral , Animais , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Camundongos , Microambiente Tumoral/genética , Organoides/metabolismo , Organoides/patologia , Análise de Sequência de RNA/métodos , Humanos , RNA Nuclear Pequeno/genética , RNA Nuclear Pequeno/metabolismoRESUMO
Pancreatic ductal adenocarcinoma (PDAC) has a dismal prognosis. Cancer-associated fibroblasts (CAFs) are recognized potential therapeutic targets, but poor understanding of these heterogeneous cell populations has limited the development of effective treatment strategies. We previously identified transforming growth factor beta (TGF-ß) as a main driver of myofibroblastic CAFs (myCAFs). Here, we show that epidermal growth factor receptor/Erb-B2 receptor (EGFR/ERBB2) signaling is induced by TGF-ß in myCAFs through an autocrine process mediated by amphiregulin. Inhibition of this EGFR/ERBB2-signaling network in PDAC organoid-derived cultures and mouse models differentially impacts distinct CAF subtypes, providing insights into mechanisms underpinning their heterogeneity. Remarkably, EGFR-activated myCAFs promote PDAC metastasis in mice, unmasking functional significance in myCAF heterogeneity. Finally, analyses of other cancer datasets suggest that these processes might operate in other malignancies. These data provide functional relevance to myCAF heterogeneity and identify a candidate target for preventing tumor invasion in PDAC.
Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Camundongos , Animais , Miofibroblastos/patologia , Neoplasias Pancreáticas/tratamento farmacológico , Carcinoma Ductal Pancreático/tratamento farmacológico , Transdução de Sinais , Fator de Crescimento Transformador beta , Microambiente TumoralRESUMO
High-grade serous ovarian carcinoma (HGSOC) is the most genomically complex cancer, characterized by ubiquitous TP53 mutation, profound chromosomal instability, and heterogeneity. The mutational processes driving chromosomal instability in HGSOC can be distinguished by specific copy number signatures. To develop clinically relevant models of these mutational processes we derived 15 continuous HGSOC patient-derived organoids (PDOs) and characterized them using bulk transcriptomic, bulk genomic, single-cell genomic, and drug sensitivity assays. We show that HGSOC PDOs comprise communities of different clonal populations and represent models of different causes of chromosomal instability including homologous recombination deficiency, chromothripsis, tandem-duplicator phenotype, and whole genome duplication. We also show that these PDOs can be used as exploratory tools to study transcriptional effects of copy number alterations as well as compound-sensitivity tests. In summary, HGSOC PDO cultures provide validated genomic models for studies of specific mutational processes and precision therapeutics.
Assuntos
Neoplasias Ovarianas , Humanos , Feminino , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Mutação , Genômica , Instabilidade Cromossômica , OrganoidesRESUMO
Women with ovarian cancer have limited therapy options, with immunotherapy being unsatisfactory for a large group of patients. Tumor cells spread from the ovary or the fallopian tube into the abdominal cavity, which is commonly accompanied with massive ascites production. The ascites represents a unique peritoneal liquid tumor microenvironment with the presence of both tumor and immune cells, including cytotoxic lymphocytes. We characterized lymphocytes in ascites from patients with high-grade serous ovarian cancer. Our data reveal the presence of NK and CD8+ T lymphocytes expressing CD103 and CD49a, which are markers of tissue residency. Moreover, these cells express high levels of the inhibitory NKG2A receptor, with the highest expression level detected on tissue-resident NK cells. Lymphocytes with these features were also present at the primary tumor site. Functional assays showed that tissue-resident NK cells in ascites are highly responsive towards ovarian tumor cells. Similar results were observed in an in vivo mouse model, in which tissue-resident NK and CD8+ T cells were detected in the peritoneal fluid upon tumor growth. Together, our data reveal the presence of highly functional lymphocyte populations that may be targeted to improve immunotherapy for patients with ovarian cancer.
RESUMO
High-grade serous ovarian carcinoma (HGSOC) is characterised by poor outcome and extreme chromosome instability (CIN). Therapies targeting centrosome amplification (CA), a key mediator of chromosome missegregation, may have significant clinical utility in HGSOC. However, the prevalence of CA in HGSOC, its relationship to genomic biomarkers of CIN and its potential impact on therapeutic response have not been defined. Using high-throughput multi-regional microscopy on 287 clinical HGSOC tissues and 73 cell lines models, here we show that CA through centriole overduplication is a highly recurrent and heterogeneous feature of HGSOC and strongly associated with CIN and genome subclonality. Cell-based studies showed that high-prevalence CA is phenocopied in ovarian cancer cell lines, and that high CA is associated with increased multi-treatment resistance; most notably to paclitaxel, the commonest treatment used in HGSOC. CA in HGSOC may therefore present a potential driver of tumour evolution and a powerful biomarker for response to standard-of-care treatment.
Assuntos
Cistadenocarcinoma Seroso , Neoplasias Ovarianas , Humanos , Feminino , Neoplasias Ovarianas/patologia , Paclitaxel/farmacologia , Paclitaxel/uso terapêutico , Centrossomo/metabolismo , Cistadenocarcinoma Seroso/genéticaRESUMO
The drivers of recurrence and resistance in ovarian high grade serous carcinoma remain unclear. We investigate the acquisition of resistance by collecting tumour biopsies from a cohort of 276 women with relapsed ovarian high grade serous carcinoma in the BriTROC-1 study. Panel sequencing shows close concordance between diagnosis and relapse, with only four discordant cases. There is also very strong concordance in copy number between diagnosis and relapse, with no significant difference in purity, ploidy or focal somatic copy number alterations, even when stratified by platinum sensitivity or prior chemotherapy lines. Copy number signatures are strongly correlated with immune cell infiltration, whilst diagnosis samples from patients with primary platinum resistance have increased rates of CCNE1 and KRAS amplification and copy number signature 1 exposure. Our data show that the ovarian high grade serous carcinoma genome is remarkably stable between diagnosis and relapse and acquired chemotherapy resistance does not select for common copy number drivers.
Assuntos
Cistadenocarcinoma Seroso , Neoplasias Ovarianas , Humanos , Feminino , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Variações do Número de Cópias de DNA/genética , Recidiva Local de Neoplasia/genética , Mutação , Cistadenocarcinoma Seroso/tratamento farmacológico , Cistadenocarcinoma Seroso/genética , Cistadenocarcinoma Seroso/patologiaRESUMO
High grade serous ovarian carcinoma (HGSOC) is a highly heterogeneous disease that typically presents at an advanced, metastatic state. The multi-scale complexity of HGSOC is a major obstacle to predicting response to neoadjuvant chemotherapy (NACT) and understanding critical determinants of response. Here we present a framework to predict the response of HGSOC patients to NACT integrating baseline clinical, blood-based, and radiomic biomarkers extracted from all primary and metastatic lesions. We use an ensemble machine learning model trained to predict the change in total disease volume using data obtained at diagnosis (n = 72). The model is validated in an internal hold-out cohort (n = 20) and an independent external patient cohort (n = 42). In the external cohort the integrated radiomics model reduces the prediction error by 8% with respect to the clinical model, achieving an AUC of 0.78 for RECIST 1.1 classification compared to 0.47 for the clinical model. Our results emphasize the value of including radiomics data in integrative models of treatment response and provide methods for developing new biomarker-based clinical trials of NACT in HGSOC.
Assuntos
Neoplasias Ovarianas , Humanos , Feminino , Neoplasias Ovarianas/diagnóstico por imagem , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Terapia Neoadjuvante/métodos , Biomarcadores Tumorais/genéticaRESUMO
The breast cancer susceptibility gene BARD1 (BRCA1-associated RING domain protein, MIM# 601593) acts with BRCA1 in DNA double-strand break (DSB) repair and also in apoptosis initiation. We screened 109 BRCA1/2 negative high-risk breast and/or ovarian cancer patients from North-Eastern Poland for BARD1 germline mutations using a combination of denaturing high-performance liquid chromatography and direct sequencing. We identified 16 different BARD1 sequence variants, five of which are novel. Three of them were suspected to be pathogenic, including a protein truncating nonsense mutation (c.1690C>T, p.Gln564X), a splice mutation (c.1315-2A>G) resulting in exon 5 skipping, and a silent change (c.1977A>G) which alters several exonic splicing enhancer motifs in exon 10 and results in a transcript lacking exons 2-9. Our findings suggest that BARD1 mutations may be regarded as cancer risk alleles and warrant further investigation to determine their actual contribution to non-BRCA1/2 breast and ovarian cancer families.
Assuntos
Neoplasias da Mama/genética , Neoplasias Ovarianas/genética , Proteínas Supressoras de Tumor/genética , Ubiquitina-Proteína Ligases/genética , Adulto , Idoso , Proteínas Reguladoras de Apoptose/genética , Proteína BRCA1/genética , Proteína BRCA2/genética , Sequência de Bases , Análise Mutacional de DNA , Feminino , Predisposição Genética para Doença , Testes Genéticos , Humanos , Pessoa de Meia-Idade , Mutação , Linhagem , Análise de Sequência de DNARESUMO
PURPOSE: Ovarian high-grade serous carcinoma (HGSC) is usually diagnosed at late stage. We investigated whether late-stage HGSC has unique genomic characteristics consistent with acquisition of evolutionary advantage compared with early-stage tumors. EXPERIMENTAL DESIGN: We performed targeted next-generation sequencing and shallow whole-genome sequencing (sWGS) on pretreatment samples from 43 patients with FIGO stage I-IIA HGSC to investigate somatic mutations and copy-number (CN) alterations (SCNA). We compared results to pretreatment samples from 52 patients with stage IIIC/IV HGSC from the BriTROC-1 study. RESULTS: Age of diagnosis did not differ between early-stage and late-stage patients (median 61.3 years vs. 62.3 years, respectively). TP53 mutations were near-universal in both cohorts (89% early-stage, 100% late-stage), and there were no significant differences in the rates of other somatic mutations, including BRCA1 and BRCA2. We also did not observe cohort-specific focal SCNA that could explain biological behavior. However, ploidy was higher in late-stage (median, 3.0) than early-stage (median, 1.9) samples. CN signature exposures were significantly different between cohorts, with greater relative signature 3 exposure in early-stage and greater signature 4 in late-stage. Unsupervised clustering based on CN signatures identified three clusters that were prognostic. CONCLUSIONS: Early-stage and late-stage HGSCs have highly similar patterns of mutation and focal SCNA. However, CN signature analysis showed that late-stage disease has distinct signature exposures consistent with whole-genome duplication. Further analyses will be required to ascertain whether these differences reflect genuine biological differences between early-stage and late-stage or simply time-related markers of evolutionary fitness. See related commentary by Yang et al., p. 2730.