Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Small ; 18(18): e2107393, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35363419

RESUMO

The internal design of DNA nanostructures defines how they behave in different environmental conditions, such as endonuclease-rich or low-Mg2+ solutions. Notably, the inter-helical crossovers that form the core of such DNA objects have a major impact on their mechanical properties and stability. Importantly, crossover design can be used to optimize DNA nanostructures for target applications, especially when developing them for biomedical environments. To elucidate this, two otherwise identical DNA origami designs are presented that have a different number of staple crossovers between neighboring helices, spaced at 42- and 21- basepair (bp) intervals, respectively. The behavior of these structures is then compared in various buffer conditions, as well as when they are exposed to enzymatic digestion by DNase I. The results show that an increased number of crossovers significantly improves the nuclease resistance of the DNA origami by making it less accessible to digestion enzymes but simultaneously lowers its stability under Mg2+ -free conditions by reducing the malleability of the structures. Therefore, these results represent an important step toward rational, application-specific DNA nanostructure design.


Assuntos
DNA , Nanoestruturas , Estudos Cross-Over , DNA/química , Nanoestruturas/química , Nanotecnologia/métodos , Conformação de Ácido Nucleico
2.
Molecules ; 25(8)2020 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-32316126

RESUMO

Structural DNA nanotechnology has recently gained significant momentum, as diverse design tools for producing custom DNA shapes have become more and more accessible to numerous laboratories worldwide. Most commonly, researchers are employing a scaffolded DNA origami technique by "sculpting" a desired shape from a given lattice composed of packed adjacent DNA helices. Albeit relatively straightforward to implement, this approach contains its own apparent restrictions. First, the designs are limited to certain lattice types. Second, the long scaffold strand that runs through the entire structure has to be manually routed. Third, the technique does not support trouble-free fabrication of hollow single-layer structures that may have more favorable features and properties compared to objects with closely packed helices, especially in biological research such as drug delivery. In this focused review, we discuss the recent development of wireframe DNA nanostructures-methods relying on meshing and rendering DNA-that may overcome these obstacles. In addition, we describe each available technique and the possible shapes that can be generated. Overall, the remarkable evolution in wireframe DNA structure design methods has not only induced an increase in their complexity and thus expanded the prevalent shape space, but also already reached a state at which the whole design process of a chosen shape can be carried out automatically. We believe that by combining cost-effective biotechnological mass production of DNA strands with top-down processes that decrease human input in the design procedure to minimum, this progress will lead us to a new era of DNA nanotechnology with potential applications coming increasingly into view.


Assuntos
DNA/síntese química , Nanoestruturas/química , Algoritmos , DNA/química , Sistemas de Liberação de Medicamentos , Humanos , Conformação de Ácido Nucleico
3.
Nanoscale ; 15(19): 8589-8596, 2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37097163

RESUMO

We report on efficient surface-enhanced Raman spectroscopy (SERS) supporting substrates, which are based on deoxyribonucleic acid (DNA)-assisted lithography (DALI) and a layered configuration of materials. In detail, we used nanoscopic DNA origami bowtie templates to form hybrid nanostructures consisting of aligned silver bowtie-shaped particles and apertures of similar shape in a silver film. We hypothesized that this particular geometry could facilitate a four-fold advantage in Raman enhancement compared to common particle-based SERS substrates, and further, we verified these hypotheses experimentally and by finite difference time domain simulations. In summary, our DALI-fabricated hybrid structures suppress the background emission, allow emission predominantly from the areas of high field enhancement, and support additional resonances associated with the nanoscopic apertures. Finally, these nanoapertures also enhance the fields associated with the resonances of the underlying bowtie particles. The versatility and parallel nature of our DNA origami-based nanofabrication scheme and all of the above-mentioned features of the hybrid structures therefore make our optically resonant substrates attractive for various SERS-based applications.


Assuntos
Nanoestruturas , Prata , Prata/química , Nanoestruturas/química , Análise Espectral Raman/métodos , Impressão/métodos , DNA/química
4.
ACS Sens ; 8(4): 1471-1480, 2023 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-36914224

RESUMO

Electrochemical DNA (e-DNA) biosensors are feasible tools for disease monitoring, with their ability to translate hybridization events between a desired nucleic acid target and a functionalized transducer, into recordable electrical signals. Such an approach provides a powerful method of sample analysis, with a strong potential to generate a rapid time to result in response to low analyte concentrations. Here, we report a strategy for the amplification of electrochemical signals associated with DNA hybridization, by harnessing the programmability of the DNA origami method to construct a sandwich assay to boost charge transfer resistance (RCT) associated with target detection. This allowed for an improvement in the sensor limit of detection by two orders of magnitude compared to a conventional label-free e-DNA biosensor design and linearity for target concentrations between 10 pM and 1 nM without the requirement for probe labeling or enzymatic support. Additionally, this sensor design proved capable of achieving a high degree of strand selectivity in a challenging DNA-rich environment. This approach serves as a practical method for addressing strict sensitivity requirements necessary for a low-cost point-of-care device.


Assuntos
Técnicas Biossensoriais , Técnicas Eletroquímicas , Técnicas Eletroquímicas/métodos , DNA/genética , Hibridização de Ácido Nucleico/métodos , Técnicas Biossensoriais/métodos
5.
Materials (Basel) ; 15(13)2022 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-35806570

RESUMO

Nanoswimmers are synthetic nanoscale objects that convert the available surrounding free energy to a directed motion. For example, bacteria with various flagella types serve as textbook examples of the minuscule swimmers found in nature. Along these lines, a plethora of artificial hybrid and non-hybrid nanoswimmers have been introduced, and they could find many uses, e.g., for targeted drug delivery systems (TDDSs) and controlled drug treatments. Here, we discuss a certain class of nanoparticles, i.e., functional, capped Janus nanospheres that can be employed as nanoswimmers, their subclasses and properties, as well as their various implementations. A brief outlook is given on different fabrication and synthesis methods, as well as on the diverse compositions used to prepare nanoswimmers, with a focus on the particle types and materials suitable for biomedical applications. Several recent studies have shown remarkable success in achieving temporally and spatially controlled drug delivery in vitro using Janus-particle-based TDDSs. We believe that this review will serve as a concise introductory synopsis for the interested readers. Therefore, we hope that it will deepen the general understanding of nanoparticle behavior in biological matrices.

6.
iScience ; 25(6): 104389, 2022 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-35633938

RESUMO

Precise genome editing with CRISPR/Cas paves the way for many biochemical, biotechnological, and medical applications, and consequently, it may enable treatment of already known and still-to-be-found genetic diseases. Meanwhile, another rapidly emerging field-structural DNA nanotechnology-provides a customizable and modular platform for accurate positioning of nanoscopic materials, for e.g., biomedical uses. This addressability has just recently been applied in conjunction with the newly developed gene engineering tools to enable impactful, programmable nanotechnological applications. As of yet, self-assembled DNA nanostructures have been mainly employed to enhance and direct the delivery of CRISPR/Cas, but lately the groundwork has also been laid out for other intriguing and complex functions. These recent advances will be described in this perspective.

7.
Nanoscale ; 14(27): 9648-9654, 2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35718875

RESUMO

Here, we study optically resonant substrates fabricated using the previously reported BLIN (biotemplated lithography of inorganic nanostructures) technique with single triangle and bowtie DNA origami as templates. We present the first optical characterization of BLIN-fabricated origami-shaped silver nanoparticle patterns on glass surfaces, comprising optical transmission measurements and surface-enhanced Raman spectroscopy. The formed nanoparticle patterns are examined by optical transmission measurements and used for surface enhanced Raman spectroscopy (SERS) of Rhodamine 6G (R6G) dye molecules. Polarization-resolved simulations reveal that the higher SERS enhancement observed for the bowties is primarily due to spectral overlap of the optical resonances with the Raman transitions of R6G. The results manifest the applicability of the BLIN method and substantiate its potential in parallel and high-throughput substrate manufacturing with engineered optical properties. While the results demonstrate the crucial role of the formed nanogaps for SERS, the DNA origami may enable even more complex nanopatterns for various optical applications.


Assuntos
Nanopartículas Metálicas , Prata , DNA/química , Nanopartículas Metálicas/química , Impressão/métodos , Prata/química , Análise Espectral Raman/métodos
8.
Nanomaterials (Basel) ; 11(6)2021 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-34071795

RESUMO

Viruses are among the most intriguing nanostructures found in nature. Their atomically precise shapes and unique biological properties, especially in protecting and transferring genetic information, have enabled a plethora of biomedical applications. On the other hand, structural DNA nanotechnology has recently emerged as a highly useful tool to create programmable nanoscale structures. They can be extended to user defined devices to exhibit a wide range of static, as well as dynamic functions. In this review, we feature the recent development of virus-DNA hybrid materials. Such structures exhibit the best features of both worlds by combining the biological properties of viruses with the highly controlled assembly properties of DNA. We present how the DNA shapes can act as "structured" genomic material and direct the formation of virus capsid proteins or be encapsulated inside symmetrical capsids. Tobacco mosaic virus-DNA hybrids are discussed as the examples of dynamic systems and directed formation of conjugates. Finally, we highlight virus-mimicking approaches based on lipid- and protein-coated DNA structures that may elicit enhanced stability, immunocompatibility and delivery properties. This development also paves the way for DNA-based vaccines as the programmable nano-objects can be used for controlling immune cell activation.

9.
ACS Appl Bio Mater ; 3(9): 5606-5619, 2020 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-35021792

RESUMO

Diverse nanopore-based technologies have substantially expanded the toolbox for label-free single-molecule sensing and sequencing applications. Biological protein pores, lithographically fabricated solid-state and graphene nanopores, and hybrid pores are in widespread use and have proven to be feasible devices for detecting amino acids, polynucleotides, and their specific conformations. However, despite the indisputable and remarkable advantages in technological exploration and commercialization of such equipment, the commonly used methods may lack modularity and specificity in characterization of particular phenomena or in development of nanopore-based devices. In this review, we discuss DNA nanopore techniques that harness the extreme addressability, precision, and modularity of DNA nanostructures that can be incorporated as customized gates or plugs into for example lipid membranes, solid-state pores, and nanocapillaries, thus forming advanced hybrid instruments. In addition to these, there exist a number of diverse DNA-assisted nanopore-based detection and analysis methods. Here, we introduce different types of DNA nanostructure-based pore designs and their intriguing properties as well as summarize the extensive collection of current and future technologies and applications that can be realized through combining DNA nanotechnology with common nanopore approaches.

10.
ACS Synth Biol ; 9(8): 1923-1940, 2020 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-32589832

RESUMO

Over the past decade, DNA nanotechnology has spawned a broad variety of functional nanostructures tailored toward the enabled state at which applications are coming increasingly in view. One of the branches of these applications is in synthetic biology, where the intrinsic programmability of the DNA nanostructures may pave the way for smart task-specific molecular robotics. In brief, the synthesis of the user-defined artificial DNA nano-objects is based on employing DNA molecules with custom lengths and sequences as building materials that predictably assemble together by obeying Watson-Crick base pairing rules. The general workflow of creating DNA nanoshapes is getting more and more straightforward, and some objects can be designed automatically from the top down. The versatile DNA nano-objects can serve as synthetic tools at the interface with biology, for example, in therapeutics and diagnostics as dynamic logic-gated nanopills, light-, pH-, and thermally driven devices. Such diverse apparatuses can also serve as optical polarizers, sensors and capsules, autonomous cargo-sorting robots, rotary machines, precision measurement tools, as well as electric and magnetic-field directed robotic arms. In this review, we summarize the recent progress in robotic DNA nanostructures, mechanics, and their various implementations.


Assuntos
DNA/química , Nanoestruturas/química , Robótica , Técnicas Biossensoriais/métodos , Portadores de Fármacos/química , Nanomedicina , Nanotecnologia
11.
J Vis Exp ; (151)2019 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-31609310

RESUMO

Structural DNA nanotechnology provides a viable route for building from the bottom-up using DNA as construction material. The most common DNA nanofabrication technique is called DNA origami, and it allows high-throughput synthesis of accurate and highly versatile structures with nanometer-level precision. Here, it is shown how the spatial information of DNA origami can be transferred to metallic nanostructures by combining the bottom-up DNA origami with the conventionally used top-down lithography approaches. This allows fabrication of billions of tiny nanostructures in one step onto selected substrates. The method is demonstrated using bowtie DNA origami to create metallic bowtie-shaped antenna structures on silicon nitride or sapphire substrates. The method relies on the selective growth of a silicon oxide layer on top of the origami deposition substrate, thus resulting in a patterning mask for following lithographic steps. These nanostructure-equipped surfaces can be further used as molecular sensors (e.g., surface-enhanced Raman spectroscopy (SERS)) and in various other optical applications at the visible wavelength range owing to the small feature sizes (sub-10 nm). The technique can be extended to other materials through methodological modifications; therefore, the resulting optically active surfaces may find use in development of metamaterials and metasurfaces.


Assuntos
Técnicas Biossensoriais/métodos , DNA/química , Nanoestruturas/química , Nanotecnologia/métodos , Impressão/métodos , Dióxido de Silício/química , Análise Espectral Raman/métodos , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA