Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Small ; 19(13): e2201790, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-35570377

RESUMO

Heparin is a commonly applied blood anticoagulant agent in clinical use. After treatment, excess heparin needs to be removed to circumvent side effects and recover the blood-clotting cascade. Most existing heparin antidotes rely on direct heparin binding and complexation, yet selective compartmentalization and sequestration of heparin would be beneficial for safety and efficiency. However, such systems have remained elusive. Herein, a semipermeable protein-based microcompartment (proteinosome) is loaded with a highly positively charged chitosan derivative, which can induce electrostatics-driven internalization of anionic guest molecules inside the compartment. Chitosan-loaded proteinosomes are subsequently employed to capture heparin, and an excellent heparin-scavenging performance is demonstrated under physiologically relevant conditions. Both the highly positive scavenger and the polyelectrolyte complex are confined and shielded by the protein compartment in a time-dependent manner. Moreover, selective heparin-scavenging behavior over serum albumin is realized through adjusting the localized scavenger or surrounding salt concentrations at application-relevant circumstances. In vitro studies reveal that the cytotoxicity of the cationic scavenger and the produced polyelectrolyte complex is reduced by protocell shielding. Therefore, the proteinosome-based systems may present a novel polyelectrolyte-scavenging method for biomedical applications.


Assuntos
Células Artificiais , Quitosana , Heparina/química , Células Artificiais/química , Quitosana/química , Polieletrólitos , Proteínas/química
2.
Nat Commun ; 12(1): 4586, 2021 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-34321486

RESUMO

Heterogeneous immunoassays such as ELISA have become indispensable in modern bioanalysis, yet translation into point-of-care assays is hindered by their dependence on external calibration and multiple washing and incubation steps. Here, we introduce RAPPID (Ratiometric Plug-and-Play Immunodiagnostics), a mix-and-measure homogeneous immunoassay platform that combines highly specific antibody-based detection with a ratiometric bioluminescent readout. The concept entails analyte-induced complementation of split NanoLuc luciferase fragments, photoconjugated to an antibody sandwich pair via protein G adapters. Introduction of a calibrator luciferase provides a robust ratiometric signal that allows direct in-sample calibration and quantitative measurements in complex media such as blood plasma. We developed RAPPID sensors that allow low-picomolar detection of several protein biomarkers, anti-drug antibodies, therapeutic antibodies, and both SARS-CoV-2 spike protein and anti-SARS-CoV-2 antibodies. With its easy-to-implement standardized workflow, RAPPID provides an attractive, fast, and low-cost alternative to traditional immunoassays, in an academic setting, in clinical laboratories, and for point-of-care applications.


Assuntos
Anticorpos Antivirais/sangue , Teste Sorológico para COVID-19/métodos , COVID-19/diagnóstico , Imunoensaio/normas , Medições Luminescentes/normas , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/sangue , COVID-19/imunologia , COVID-19/virologia , Teste Sorológico para COVID-19/instrumentação , Calibragem , Proteínas de Ligação ao GTP/química , Genes Reporter , Humanos , Imunoconjugados/química , Limite de Detecção , Luciferases/genética , Luciferases/metabolismo , Testes Imediatos , SARS-CoV-2/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA