RESUMO
Research on titanium-oxo complexes (TOCs) is usually focused on their structure and photocatalytic properties. Findings from these investigations further sparked our interest in exploring their potential biological activities. In this study, we focused on the synthesis and structure of a compound with the general formula [Ti8O2(OiPr)20(man)4] (1), which was isolated from the reaction mixture of titanium(IV) isopropoxide with mandelic acid (Hman) in a molar ratio of 4:1. The structure (1) was determined using single-crystal X-ray diffraction, while spectroscopic studies provided insights into its physicochemical properties. To assess the potential practical applications of (1), its microcrystals were incorporated into a polymethyl methacrylate (PMMA) matrix, yielding composite materials of the type PMMA + (1) (2 wt.%, 5 wt.%, 10 wt.%, and 20 wt.%). The next stage of our research involved the evaluation of the antimicrobial activity of the obtained materials. The investigations performed demonstrated the antimicrobial activity of pure (1) and its composites (PMMA + (1)) against both Gram-positive and Gram-negative strains. Furthermore, MTT tests conducted on the L929 murine fibroblast cell line confirmed the lack of cytotoxicity of these composites. Our study identified (1) as a promising antimicrobial agent, which is also may be use for producing composite coatings.
Assuntos
Titânio , Titânio/química , Titânio/farmacologia , Camundongos , Animais , Ligantes , Ácidos Mandélicos/química , Ácidos Mandélicos/farmacologia , Testes de Sensibilidade Microbiana , Linhagem Celular , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Complexos de Coordenação/síntese química , Estrutura Molecular , Fibroblastos/efeitos dos fármacos , Cristalografia por Raios XRESUMO
Industrial wastes with hazardous dyes serve as a major source of water pollution, which is considered to have an enormous impact on public health. In this study, an eco-friendly adsorbent, the porous siliceous frustules extracted from the diatom species Halamphora cf. salinicola, grown under laboratory conditions, has been identified. The porous architecture and negative surface charge under a pH of 7, provided by the various functional groups via Si-O, N-H, and O-H on these surfaces, revealed by SEM, the N2 adsorption/desorption isotherm, Zeta-potential measurement, and ATR-FTIR, respectively, made the frustules an efficient mean of removal of the diazo and basic dyes from the aqueous solutions, 74.9%, 94.02%, and 99.81% against Congo Red (CR), Crystal Violet (CV), and Malachite Green (MG), respectively. The maximum adsorption capacities were calculated from isotherms, as follows: 13.04 mg g-1, 41.97 mg g-1, and 33.19 mg g-1 against CR, CV, and MG, respectively. Kinetic and isotherm models showed a higher correlation to Pore diffusion and Sips models for CR, and Pseudo-Second Order and Freundlich models for CV and MG. Therefore, the cleaned frustules of the thermal spring-originated diatom strain Halamphora cf. salinicola could be used as a novel adsorbent of a biological origin against anionic and basic dyes.
Assuntos
Diatomáceas , Poluentes Químicos da Água , Corantes/química , Corantes de Rosanilina/química , Vermelho Congo , Água/química , Adsorção , Cinética , Concentração de Íons de Hidrogênio , Poluentes Químicos da Água/químicaRESUMO
Despite many studies, the question about the positive or negative influence of electromagnetic fields (EMF) on living organisms still remains an unresolved issue. To date, the results are inconsistent and hardly comparable between different laboratories. The observed bio-effects are dependent not only on the applied EMF itself, but on many other factors such as the model system tested or environmental ones. In an organism, the role of the defense system against external stressors is played by the immune system consisting of various cell types. The immune cells are engaged in many physiological processes and responsible for the proper functioning of the whole organism. Any factor with an ability to cause immunomodulatory effects may weaken or enhance the response of the immune system. This review is focused on a wide range electromagnetic fields as a possible external factor which may modulate the innate and/or adaptive immunity. Considering the existing databases, we have compiled the bio-effects evoked by EMF in particular immune cell types involved in different types of immune response with the common mechanistic models and mostly activated intracellular signaling cascade pathways.
Assuntos
Imunidade Adaptativa , Campos Eletromagnéticos , Campos Eletromagnéticos/efeitos adversos , Sistema Imunitário , Transdução de SinaisRESUMO
Excessive misuse of antibiotics and antimicrobials has led to a spread of microorganisms resistant to most currently used agents. The resulting global threats has driven the search for new materials with optimal antimicrobial activity and their application in various areas of our lives. In our research, we focused on the formation of composite materials produced by the dispersion of titanium(IV)-oxo complexes (TOCs) in poly(ε-caprolactone) (PCL) matrix, which exhibit optimal antimicrobial activity. TOCs, of the general formula [Ti4O2(OiBu)10(O2CR')2] (R' = PhNH2 (1), C13H9 (2)) were synthesized as a result of the direct reaction of titanium(IV) isobutoxide and 4-aminobenzoic acid or 9-fluorenecarboxylic acid. The microcrystalline powders of (1) and (2), whose structures were confirmed by infrared (IR) and Raman spectroscopy, were dispersed in PCL matrixes. In this way, the composites PCL + nTOCs (n = 5 and 20 wt.%) were produced. The structure and physicochemical properties were determined on the basis of Raman microscopy, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), electron paramagnetic resonance spectroscopy (EPR), and UV-Vis diffuse reflectance spectroscopy (DRS). The degree of TOCs distribution in the polymer matrix was monitored by scanning electron microscopy (SEM). The addition of TOCs micro grains into the PCL matrix only slightly changed the thermal and mechanical properties of the composite compared to the pure PCL. Among the investigated PCL + TOCs systems, promising antibacterial properties were confirmed for samples of PCL + n(2) (n = 5, 20 wt.%) composites, which simultaneously revealed the best photocatalytic activity in the visible range.
Assuntos
Anti-Infecciosos/síntese química , Compostos Organometálicos/síntese química , Poliésteres/química , Titânio/química , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Varredura Diferencial de Calorimetria , Catálise , Microscopia Eletrônica de Varredura , Compostos Organometálicos/química , Compostos Organometálicos/farmacologia , Processos Fotoquímicos , Espectroscopia de Infravermelho com Transformada de Fourier , Resistência à Tração , Difração de Raios XRESUMO
The emergence of a large number of bacterial strains resistant to many drugs or disinfectants currently used contributed to the search of new, more effective antimicrobial agents. In the presented paper, we assessed the microbiocidal activity of tri- and tetranuclear oxo-titanium(IV) complexes (TOCs), which were dispersed in the poly(methyl methacrylate) (PMMA) matrix. The TOCs were synthesized in reaction to Ti(OR)4 (R = iPr, iBu) and HO2CR' (R' = 4-PhNH2 and 4-PhOH) in a 4:1 molar ratio at room temperature and in Ar atmosphere. The structure of isolated oxo-complexes was confirmed by IR and Raman spectroscopy and mass spectrometry. The antimicrobial activity of the produced composites (PMMA + TOCs) was estimated against Gram-positive (Staphylococcus aureus ATCC 6538 and S. aureus ATCC 25923) and Gram-negative (Escherichia coli ATCC 8739 and E. coli ATCC 25922) bacteria and yeasts of Candida albicans ATCC 10231. All produced composites showed biocidal activity against the bacteria. Composites containing {Ti4O2} cores and the {Ti3O} core stabilized by the 4-hydroxybenzoic ligand showed also high activity against yeasts. The results of investigations carried out suggest that produced (PMMA + TOCs) composites, due to their microbiocidal activity, could find an application in the elimination of microbial contaminations in various fields of our lives.
Assuntos
Cátions/química , Complexos de Coordenação/química , Polímeros/química , Titânio/química , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Fenômenos Químicos , Técnicas de Química Sintética , Complexos de Coordenação/síntese química , Complexos de Coordenação/farmacologia , Espectroscopia de Ressonância Magnética , Testes de Sensibilidade Microbiana , Processos Fotoquímicos , Análise EspectralRESUMO
Dispersed silver nanoparticles (AgNPs) on the surface of titanium alloy (Ti6Al4V) and titanium alloy modified by titania nanotube layer (Ti6Al4V/TNT) substrates were produced by the chemical vapor deposition method (CVD) using a novel precursor of the formula [Ag5(O2CC2F5)5(H2O)3]. The structure and volatile properties of this compound were determined using single crystal X-ray diffractometry, variable temperature IR spectrophotometry (VT IR), and electron inducted mass spectrometry (EI MS). The morphology and the structure of the produced Ti6Al4V/AgNPs and Ti6Al4V/TNT/AgNPs composites were characterized by scanning electron microscopy (SEM) and atomic force microscopy (AFM). Moreover, measurements of hardness, Young's modulus, adhesion, wettability, and surface free energy have been carried out. The ability to release silver ions from the surface of produced nanocomposite materials immersed in phosphate-buffered saline (PBS) solution has been estimated using inductively coupled plasma mass spectrometry (ICP-MS). The results of our studies proved the usefulness of the CVD method to enrich of the Ti6Al4V/TNT system with silver nanoparticles. Among the studied surface-modified titanium alloy implants, the better nano-mechanical properties were noticed for the Ti6Al4V/TNT/AgNPs composite in comparison to systems non-enriched by AgNPs. The location of silver nanoparticles inside of titania nanotubes caused their lowest release rate, which may indicate suitable properties on the above-mentioned type of the composite for the construction of implants with a long term antimicrobial activity.
Assuntos
Fenômenos Mecânicos , Próteses e Implantes , Prata/química , Titânio/química , Adesividade , Ligas , Líquidos Corporais/química , Materiais Revestidos Biocompatíveis/química , Módulo de Elasticidade , Dureza , Íons , Nanopartículas Metálicas/química , Nanopartículas Metálicas/ultraestrutura , Microscopia de Força Atômica , Conformação Molecular , Espectrometria por Raios X , Espectrofotometria Infravermelho , TermodinâmicaRESUMO
The highly ordered titanium dioxide nanotube coatings were produced under various electrochemical conditions on the surface of titanium foil. The anodization voltage changes proved to be a main factor which directly affects the nanotube morphology, structure, and wettability. Moreover we have noticed a significant dependence between the size and crystallinity of TiO2 layers and the adhesion/proliferation of fibroblasts and antimicrobial properties. Cellular functionality were investigated for up to 3 days in culture using a cell viability assay and scanning electron microscopy. In general, results of our studies revealed that fibroblasts adhesion, proliferation, and differentiation on the titania nanotube coatings is clearly higher than on the surface of the pure titanium foil. The formation of crystallic islands in the nanotubes structure induced a significant acceleration in the growth rate of fibroblasts cells by as much as ~200 %. Additionally, some types of TiO2 layers revealed the ability to the reduce of the staphylococcal aggregates/biofilm formation. The nanotube coatings formed during the anodization process using the voltage 4 V proved to be the stronger S. aureus aggregates/biofilm inhibitor in comparison to the uncovered titanium substrate. That accelerated eukaryotic cell growth and anti-biofilm activity is believed to be advantageous for faster cure of dental and orthopaedic patients, and also for a variety of biomedical diagnostic and therapeutic applications. The highly ordered titanium dioxide nanotube coatings were produced under various electrochemical conditions on the surface of titanium foil. The anodization voltage changes proved to be a main factor which directly affects the nanotube morphology, structure, and wettability. Moreover we have noticed a significant dependence between the size and crystallinity of TiO2 layers and the adhesion/proliferation of fibroblasts and antimicrobial properties.
Assuntos
Fenômenos Fisiológicos Bacterianos/efeitos dos fármacos , Fibroblastos/fisiologia , Nanotubos/química , Titânio/química , Titânio/farmacologia , Animais , Antibacterianos/síntese química , Antibacterianos/farmacologia , Adesão Celular/efeitos dos fármacos , Adesão Celular/fisiologia , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/fisiologia , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Materiais Revestidos Biocompatíveis/síntese química , Materiais Revestidos Biocompatíveis/farmacologia , Cristalização , Fibroblastos/efeitos dos fármacos , Teste de Materiais , Camundongos , Nanotubos/ultraestrutura , Tamanho da Partícula , Transição de Fase , MolhabilidadeRESUMO
For the first time we report the structural conversion processes of hexanuclear µ-oxo-Ti(IV) complexes into tetranuclear ones. Single-crystal X-ray diffraction studies reveal that metastable hexanuclear µ-oxo complexes ([Ti6O6(O(t)Bu)(O2CR')6]) are formed in the first stage of reactions between [Ti(O(t)Bu)4] and branched carboxylic acids R'COOH (R' = C(Me)2Et, CH2(t)Bu, (t)Bu). In the next stage they convert into tetranuclear µ-oxo-Ti(IV) complexes of the formula [Ti4O4(O(t)Bu)4(O2CR')4]. Spectroscopic investigations ((13)C NMR, IR, and MS) proved that the conversion of hexanuclear clusters relies on the attachment of smaller units (e.g., [Ti3O(O(t)Bu)8(O2CR')2] or [Ti4O2(O(t)Bu)6(O2CR')6]) and intermediate species formation (e.g., [Ti9O8(O(t)Bu)14(O2CR')6]). The decomposition of intermediate systems in the next reaction stage leads to the formation of tetranuclear clusters. The type of solvent used in the synthesis of multinuclear oxo-Ti(IV) complexes is an important factor, which influences the kind of clusters formed.
RESUMO
This paper explores the findings on the structures and physicochemical properties of titanium-oxo complexes (TOCs) stabilized by 9-hydroxy-9-fluorenecarboxylate ligands. Two complexes, with the overall formulas [Ti4O(OiPr)10(O3C14H8)2] (1) and [Ti6O4(OiPr)2(O3C14H8)4(O2CEt)6] (2), have been synthesized. The structures of the isolated crystals (1 and 2) were determined using single-crystal X-ray diffraction. Molecular structure analysis of the crystals also employed vibrational spectroscopic techniques (IR and Raman), UV-Vis diffuse reflectance spectroscopy (UV-Vis-DRS), and powder X-ray diffraction (XRD). Density functional theory (DFT) was utilized to elucidate the electronic structures of these complexes. Furthermore, the theoretical charge distribution in 1 and 2 and their reactivity were calculated. The results of these investigations suggest that the reactivity of 2 is significantly greater than that of 1.
RESUMO
Here we present application of innovative lab-made analytical devices such as plasmonic silver nanostructured substrates and polypyrrole-MOF solid-phase microextraction fibers for metabolic profiling of bacteria. For the first time, comprehensive metabolic profiling of both volatile and non-volatile low-molecular weight compounds in eight bacterial strains was carried out with utilization of lab-made devices. Profiles of low molecular weight metabolites were analyzed for similarities and differences using principal component analysis, hierarchical cluster analysis and random forest algorithm. The results showed clear differentiation between Gram positive (G+) and Gram negative (G-) species which were identified as distinct clusters according to their volatile metabolites. In case of non-volatile metabolites, differentiation between G+ and G- species and clustering for all eight species were observed for the chloroform fraction of the Bligh & Dyer extract, while methanolic fraction failed to recover specific ions in the profile. Furthermore, the results showed correlation between volatile and non-volatile metabolites, which suggests that lab-made devices presented in the current study might be complementary and therefore, useful for species differentiation and gaining insights into bacterial metabolic pathways.
Assuntos
Polímeros , Pirróis , Humanos , Microextração em Fase Sólida , Bactérias , MagrezaRESUMO
In this investigation, we detail the synthesis of silver nanoparticles (AgNPs) via a precise chemical vacuum deposition (CVD) methodology, aimed at augmenting the analytical performance of laser desorption/ionization mass spectrometry (LDI-MS) for the detection of low-molecular-weight analytes. Employing a precursor supply rate of 0.0014 mg/s facilitated the formation of uniformly dispersed AgNPs, characterized by SEM and AFM to have an average diameter of 33.5 ± 1.5 nm and a surface roughness (Ra) of 11.8 nm, indicative of their homogeneous coverage and spherical morphology. XPS and SEM-EDX analyses confirmed the metallic silver composition of the nanoparticles with Ag peak splitting, reflecting the successful synthesis of metallic Ag. Comparative analytical evaluation with traditional MALDI matrices revealed that AgNPs significantly reduce signal suppression, thereby enhancing the sensitivity and specificity of LDI-MS for low-molecular-weight compounds such as triglycerides, saccharides, amino acids, and carboxylic acids. Notably, the application of AgNPs demonstrated a superior linear response for triglyceride signals with regression coefficients surpassing 0.99, markedly outperforming conventional matrices. The study further extends into quantitative analysis through nanoparticle-based laser desorption/ionization (NALDI), where AgNPs exhibited enhanced ionization efficiency, characterized by substantially lower limits of detection (LOD) and quantification (LOQ) for tested standards. Particular attention was paid to lipids with a detailed examination of their fragmentation pathways. These results highlight the significant potential of AgNPs synthesized via CVD to transform the analytical detection and quantification of low-molecular-weight compounds using NALDI. This approach offers a promising avenue for expanding the scope of analytical applications in mass spectrometry and introducing innovative methodologies for enhanced precision and sensitivity.
Assuntos
Nanopartículas Metálicas , Prata , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Prata/química , Nanopartículas Metálicas/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Aminoácidos/análise , Aminoácidos/química , Peso Molecular , Triglicerídeos/análise , Triglicerídeos/química , Ácidos Carboxílicos/química , Ácidos Carboxílicos/análise , Limite de DetecçãoRESUMO
Materials based on metals, metal oxides, and metal complexes play an essential role in various areas of our lives [...].
RESUMO
Our study aimed to verify the hypothesis concerning low-frequency magnetic fields (LF-MFs)-related changes in cell viability through the biomechanism(s) based on calcineurin (CaN)-mediated signaling pathways triggered via ROS-like molecules. For experiments, Mono Mac 6 and U937 leukocytic cell lines were chosen and exposed to various LF-MFs and/or puromycin (PMC). The protein expression level of key regulatory proteins of calcium metabolism was examined by Western Blot analysis. In turn, the reactive oxygen species (ROS) and cell viability parameters were evaluated by cytochrome C reduction assay and flow cytometry, respectively. The simultaneous action of applied MF and PMC influenced cell viability in a MF-dependent manner. The changes in cell viability were correlated with protein expression and ROS levels. It was verified experimentally that applied stress stimuli influence cell susceptibility to undergo cell death. Moreover, the evoked bioeffects might be recognized as specific to both types of leukocyte populations.
Assuntos
Cálcio , Campos Eletromagnéticos , Espécies Reativas de Oxigênio/metabolismo , Cálcio/metabolismo , Linhagem Celular , Puromicina , LeucócitosRESUMO
The global threat of numerous infectious diseases creates a great need to develop new diagnostic methods to facilitate the appropriate prescription of antimicrobial therapy. More recently, the possibility of using bacterial lipidome analysis via laser desorption/ionization mass spectrometry (LDI-MS) as useful diagnostic tool for microbial identification and rapid drug susceptibility has received particular attention because lipids are present in large quantities and can be easily extracted similar to ribosomal proteins. Therefore, the main goal of the study was to evaluate the efficacy of two different LDI techniques-matrix-assisted (MALDI) and surface-assisted (SALDI) approaches-in the classification of the closely related Escherichia coli strains under cefotaxime addition. Bacterial lipids profiles obtained by using the MALDI technique with different matrices as well as silver nanoparticle (AgNP) targets fabricated using the chemical vapor deposition method (CVD) of different AgNP sizes were analyzed by the means of different multivariate statistical methods such as principal component analysis (PCA), partial least squares discriminant analysis (PLS-DA), sparse partial least squares discriminant analysis (sPLS-DA), and orthogonal projections to latent structures discriminant analysis (OPLS-DA). The analysis showed that the MALDI classification of strains was hampered by interference from matrix-derived ions. In contrast, the lipid profiles generated by the SALDI technique had lower background noise and more signals associated with the sample, allowing E. coli to be successfully classified into cefotaxime-resistant and cefotaxime-sensitive strains, regardless of the size of the AgNPs. AgNP substrates obtained using the CVD method were used for the first time for distinguishing closely related bacterial strains based on their lipidomic profiles and demonstrate high potential as a future diagnostic tool for the detection of antibiotic susceptibility.
RESUMO
In the present paper, for the first time the ability of the porous biosilica originated from three marine diatom strains of 'Nanofrustulum spp.' viz. N. wachnickianum (SZCZCH193), N. shiloi (SZCZM1342), N. cf. shiloi (SZCZP1809), to eliminate MB from aqueous solutions was investigated. The highest biomass was achieved under silicate enrichment for N. wachnickianum and N. shiloi (0.98 g L-1 DW and 0.93 g L-1 DW respectively), and under 15 °C for N. cf. shiloi (2.2 g L-1 DW). The siliceous skeletons of the strains were purified with hydrogen peroxide and characterized by SEM, EDS, the N2 adsorption/desorption, XRD, TGA, and ATR-FTIR. The porous biosilica (20 mg DW) obtained from the strains i.e. SZCZCH193, SZCZM1342, SZCZP1809, showed efficiency in 77.6%, 96.8%, and 98.1% of 14 mg L-1 MB removal under pH 7 for 180 min, and the maximum adsorption capacity was calculated as 8.39, 19.02, and 15.17 mg g-1, respectively. Additionally, it was possible to increase the MB removal efficiency in alkaline (pH = 11) conditions up to 99.08% for SZCZP1809 after 120 min. Modelling revealed that the adsorption of MB follows Pseudo-first order, Bangham's pore diffusion and Sips isotherm models.
Assuntos
Diatomáceas , Azul de Metileno , Dióxido de Silício , Diatomáceas/química , Diatomáceas/crescimento & desenvolvimento , Dióxido de Silício/química , Dióxido de Silício/isolamento & purificação , Adsorção , Azul de Metileno/metabolismo , Concentração de Íons de Hidrogênio , Porosidade , Poluentes da Água/isolamento & purificação , Purificação da Água/instrumentação , Purificação da Água/métodosRESUMO
The important issue associated with the design and the fabrication of the titanium and titanium alloy implants is the increase of their biointegration with bone tissue. In the presented paper, the research results concerning the conditions used in the cathodic deposition of hydroxyapatite on the surface Ti6Al4V substrates primarily modified by the production of TiO2 nanoporous coatings, TiO2 nanofibers, and titanate coatings, are discussed. Despite excellent biocompatibility with natural bone tissue of materials based on hydroxyapatite (HA), their poor adhesion to the substrate caused the limited use in the implants' construction. In our works, we have focused on the comparison of the structure, physicochemical, and mechanical properties of coating systems produced at different conditions. For this purpose, scanning electron microscopy images, chemical composition, X-ray diffraction patterns, infrared spectroscopy, wettability, and mechanical properties are analyzed. Our investigations proved that the intermediate titanium oxide coatings presence significantly increases the adhesion between the hydroxyapatite layer and the Ti6Al4V substrate, thus solving the temporary delamination problems of the HA layer.
RESUMO
The titanium oxo complexes are widely studied, due to their potential applications in photocatalytic processes, environmental protection, and also in the biomedical field. The presented results concern the oxo complex synthesized in the reaction of titanium(IV) isobutoxide and acetylsalicylic acid (Hasp), in a 4:1 molar ratio. The structure of isolated crystals was solved using the single-crystal X-ray diffraction method. The analysis of these data proves that [Ti4O2(OiBu)10(asp)2]·H2O (1) complex is formed. Moreover, the molecular structure of (1) was characterized using vibrational spectroscopic techniques (IR and Raman), 13C NMR, and UV-Vis diffuse reflectance spectroscopy (UV-Vis DRS). The photocatalytic activity of the synthesized complex was determined with the use of composite foils produced by the dispersion of (1) micrograins, as the inorganic blocks, in a polycaprolactone (PCL) matrix (PCL + (1)). The introduction of (1) micrograins to the PCL matrix caused the absorption maximum shift up to 425-450 nm. The studied PCL + (1) composite samples reveal good activity toward photodecolorization of methylene blue after visible light irradiation.
RESUMO
After the pertussis vaccine had been introduced in the 1940s and was shown to be very successful in reducing the morbidity and mortality associated with the disease, the possibility of improving both vaccine composition and vaccination schedules has become the subject of continuous interest. As a result, we are witnessing a considerable heterogeneity in pertussis vaccination policies, which remains beyond universal consensus. Many pertussis-related deaths still occur in low- and middle-income countries; however, these deaths are attributable to gaps in vaccination coverage and limited access to healthcare in these countries, rather than to the poor efficacy of the first generation of pertussis vaccine consisting in inactivated and detoxified whole cell pathogen (wP). In many, particularly high-income countries, a switch was made in the 1990s to the use of acellular pertussis (aP) vaccine, to reduce the rate of post-vaccination adverse events and thereby achieve a higher percentage of children vaccinated. However the epidemiological data collected over the past few decades, even in those high-income countries, show an increase in pertussis prevalence and morbidity rates, triggering a wide-ranging debate on the causes of pertussis resurgence and the effectiveness of current pertussis prevention strategies, as well as on the efficacy of available pertussis vaccines and immunization schedules. The current article presents a systematic review of scientific reports on the evaluation of the use of whole-cell and acellular pertussis vaccines, in the context of long-term immunity and vaccines efficacy.
RESUMO
In our research, we have focused on the biological studies on composite materials produced by the dispersion of titanium(IV)-oxo complex (TOC) with acetylsalicylate ligands in a poly(ε-caprolactone) (PCL) matrix, which is a biodegradable thermoplastic polymer increasingly used in the production of medical devices. Using PCL as a matrix for the biologically active compounds, such as antimicrobial agents, antibiotics or other active medical substances, from which these individuals can be gradually released is fully understable. Composites of PCL + nTOC (n = 10, 15 and 20 wt.%) have been produced and, in such a form, the biological properties of TOCs have been estimated. Direct and indirect cytotoxicity studies have been performed in vitro on L929 and human umbilical vein endothelial cells (HUVEC) cell lines. The antibacterial and antifungal activity of the PCL + TOC samples have been assessed against two Staphylococcus aureus (ATCC 6538 and ATCC 25923) reference strains, two Escherichia coli (ATCC 8739 and ATCC 25922) reference strains and yeast of Candida albicans ATCC 10231. Obtained results have been correlated with electron paramagnetic resonance (EPR) spectroscopy data. We could conclude that photoexcitation by visible light of the surface of PCL + nTOC composite foils lead to the formation of different paramagnetic species, mainly O-, which slowly disappears over time; however, their destructive effect on bacteria and cells has been proven.
RESUMO
Hydroxyapatite (HA) layers are appropriate biomaterials for use in the modification of the surface of implants produced inter alia from a Ti6Al4V alloy. The issue that must be solved is to provide implants with appropriate biointegration properties, enabling the permanent link between them and bone tissues, which is not so easy with the HA layer. Our proposition is the use of the intermediate layer ((IL) = TiO2, and titanate layers) to successfully link the HA coating to a metal substrate (Ti6Al4V). The morphology, structure, and chemical composition of Ti6Al4V/IL/HA systems were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), and energy-dispersive X-ray spectrometry (EDS). We evaluated the apatite-forming ability on the surface of the layer in simulated body fluid. We investigated the effects of the obtained systems on the viability and growth of human MG-63 osteoblast-like cells, mouse L929 fibroblasts, and adipose-derived human mesenchymal stem cells (ADSCs) in vitro, as well as on their osteogenic properties. Based on the obtained results, we can conclude that both investigated systems reflect the physiological environment of bone tissue and create a biocompatible surface supporting cell growth. However, the nanoporous TiO2 intermediate layer with osteogenesis-supportive activity seems most promising for the practical application of Ti6Al4V/TiO2/HA as a system of bone tissue regeneration.