Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Sci Total Environ ; 725: 138233, 2020 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-32278174

RESUMO

In the Netherlands it is common to nourish the coastline with sand from the seabed. Foredunes are replenished with sand from the beach and can be transported further into the dune area. We investigated whether nourishment material alters the phosphorus (P) content of dune soil and the nitrogen (N):P ratio of dune vegetation in two areas: a mega sand nourishment with fixed foredunes (SE) and a traditional sand nourishment with dynamic foredunes (NWC). Four zones were considered: beach (zone 1), frontal foredunes (zone 2), foredunes crest (zone 3) and inner dunes (zone 4). We estimated the characteristics of fine (< 250-µm) and coarse (250-2000 µm) sand. Total P, P speciation and available P of SE and NWC were similar until zone 4. Zone 1-3 consisted mainly of coarse sand, whereas the sand in zone 4 was finer with higher amounts at NWC. Iron (Fe) bound P was comparable for fine and coarse sand in zone 1-3, but high contents were present in zone 4. In zone 1-3, calcium (Ca) bound P was mainly found in the fine fraction, which was abundant in the coarse fraction of zone 4. After a period of 4 years, the effect of dynamic dunes on P fractions and dune plant species was not apparent yet, although inblowing sand mainly consisted of fine sand with high contents of Ca-bound P. This may change over time, especially in dynamic dunes with higher eolian activity of fine sand. Consequently, pH buffering of the soil may increase because of a higher Ca­carbonate content, which leads to decreased solubility of Ca-bound P and low P availability for the vegetation. Both low P availability and high buffering capacity are known environmental factors that facilitate endangered dune plant species.

2.
Environ Toxicol Chem ; 37(11): 2933-2946, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30178514

RESUMO

Artificial sand replenishments are globally used as innovative coastal protection measures. In these replenishments elevated porewater concentrations of trace elements are found. The present study investigated possible ecotoxicological risks at 2 intertidal depositional sites, the Sand Engine as a recent innovative Dutch coastal management project and a semiartificial tidal flat. Using the sediment quality triad approach, we considered 3 major lines of evidence: geochemical characterization, toxicity characterization using bioassays with the estuarine amphipod Corophium volutator, and ecological field survey. In both depositional areas C. volutator is at risk: moderate (Sand Engine) and low (tidal flat). For tidal flat, the bioavailability of trace elements differs between the field site and the laboratory. Contamination from arsenic and copper is present, but the low survival rate of C. volutator from the bioassay suggests the presence of additional contaminations. The highly morphological dynamic environment of Sand Engine creates a less favorable habitat for C. volutator, where local spots with stagnant water can temporarily create hypoxic conditions and sulfate becomes reduced. The dynamic system mobilizes especially arsenic, triggering adverse ecotoxic effects at low original sediment concentrations. To conclude, the sediment quality triad approach shows that a semiartificial tidal flat is preferred over a highly dynamic coastal management project like the Sand Engine. The Sand Engine concept does not provide suitable conditions for macrobenthos species like C. volutator; therefore, limiting the nature development goal set together with the coastal protection goal. Assessing each line of evidence from the approach together with additional measurements established more precise and realistic conclusions, showing that evaluating the contributions of this method is necessary to understand the causes of risk in a site-specific manner. Environ Toxicol Chem 2018;37:2933-2946. © 2018 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals, Inc. on behalf of SETAC.


Assuntos
Ecotoxicologia , Monitoramento Ambiental , Rios/química , Oligoelementos/análise , Poluentes Químicos da Água/análise , Anfípodes/efeitos dos fármacos , Animais , Bioensaio , Carbono/análise , Geografia , Sedimentos Geológicos/química , Concentração de Íons de Hidrogênio , Países Baixos , Oxirredução , Fatores de Risco , Água do Mar/química
3.
Environ Pollut ; 231(Pt 1): 1063-1074, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28915544

RESUMO

To enhance protection and maintain wide beaches for recreation, beaches are replenished with sand: so-called beach nourishments. We compared four sites: two traditional beach nourishments, a mega beach nourishment and a reference without beach nourishment. Two sites contain calcareous-rich sand, whereas the other two sites have calcareous-poor sand. We aimed to understand hydrogeochemical processes to indicate factors critical for the mobility of trace elements at nourishments. We therefore analysed the chemical characteristics of sediment and pore water to ascertain the main drivers that mobilise toxic trace elements. With Dutch Quality Standards for soil and groundwater, the characteristics of sediment and pore water were compared to Target Values (the values at which there is a sustainable soil quality) and Intervention Values (the threshold above which the soil's functions are at risk). The pore water characteristics revealed that Target Values were regularly exceeded, especially for the nourishment sites and mainly for Mo (78%), Ni (24%), Cr (55%), and As (21%); Intervention Values for shallow groundwater were occasionally exceeded for As (2%), Cr (2%) and Zn (2%). The sediment characteristics did not exceed the Target Values and showed that trace elements were mainly present in the fine fraction of <150 µm. The oxidation of sulphide minerals such as pyrite resulted into the elevated concentration for all nourishment sites, especially when an unsaturated zone was present and influence of rainwater was apparent. To prevent trace metal mobility at a mega beach nourishment it is important to retain seawater influences and limit oxidation processes. In this respect, a shoreface nourishment is recommended rather than a mega beach nourishment with a thick unsaturated zone. Consequently, we conclude that whether a site is carbonate-rich or carbonate-poor is unimportant, as the influence of seawater will prevent decalcification, creating a low risk of mobilisation of trace elements.


Assuntos
Monitoramento Ambiental , Oligoelementos/análise , Poluentes Químicos da Água/análise , Dióxido de Silício , Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA