Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Inorg Chem ; 63(16): 7293-7302, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38605465

RESUMO

In this study, we investigate the potential of the 18-crown-6-like two-dimensional (2D)-N8 structure to accommodate electrons from metals without compromising its covalent nitrogen network. Employing the crystal structure prediction enhanced by evolutionary algorithm and density functional theory methodology, we successfully predicted the existence of 16 layered M@2D-N8 complexes from a total of 39 MN8 systems investigated at 100 GPa (M = s-block Na-Cs, Be-Ba and d-block Ag, Au, Cd, Hg, Hf, W, and Y). Among those, there are 13 quenchable M@2D-N8 compounds that are dynamically stable at 1 atm. Orbital interactions and bonding analysis show that 2D-N8 presents a flat localized π* band that can accommodate one or two electrons without breaking the 2D covalent nitrogen network. Depending on the metal-to-polynitrogen charge transfer (formally, 1-4 electrons), these N-rich phases are semiconducting or metallic under ambient conditions. Ab initio molecular dynamics simulations show that K(I)@2D-N8 and Ca(II)@2D-N8 are thermally stable up to 600 K, while the Hf(IV)@2D-N8 compound is thermally not viable at 400 K because of the weakening of the N═N bonds due to a strong four-electron reduction. These metal 18-crown-6 ring-based polynitrogen compounds, as expected due to their high nitrogen content (eight nitrogen atoms per metal), could potentially serve as new high-energy density materials.

2.
J Phys Chem Lett ; 15(27): 6996-7002, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38949503

RESUMO

Intrachain transport in molecular junctions (MJs) longer than 5 nm has been modeled within the theoretical framework of Marcus theory. We show that in oligo(bisthienylbenzene)-based MJs, electronic transport involves polarons, localized on three monomers that are close to 4 nm in length. They hop and tunnel between adjacent localized sites with reorganization energies λ close to 400-600 meV and electronic coupling parameters Hab close to λ/2. As a consequence, the activation energy for intrachain transport, given by the equation ΔG* = (λ/4)(1 - 2Hab/λ)2, is close to zero, and transport along the chain is activationless, in agreement with experimental observation. On the contrary, similar calculations on conjugated oligonaphthalenefluoreneimine wires show that Hab is much less than λ/2 and predict that the activation energies for intrachain hopping between adjacent sites, close to λ/4, are ∼115 meV. This work proposes a new perspective for understanding long-range activationless transport in MJs beyond the tunneling regime.

3.
Nanoscale ; 16(1): 195-204, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38050747

RESUMO

Quantum interference (QI) is well recognised as a significant contributing factor to the magnitude of molecular conductance values in both single-molecule and large area junctions. Numerous structure-property relationship studies have shown that para-connected oligo(phenyleneethynylene) (OPE) based molecular wires exemplify the impact of constructive quantum interference (CQI), whilst destructive quantum interference (DQI) effects are responsible for the orders of magnitude lower conductance of analogous meta-contacted OPE derivatives, despite the somewhat shorter effective tunnelling distance. Since molecular conductance is related to the value of the transmission function, evaluated at the electrode Fermi energy, T(EF), which in turn is influenced by the presence and relative energy of (anti)resonances, it follows that the relative single-molecule conductance of para- and meta-contacted OPE-type molecules is tuned both by the anchor group and the nature of the electrode materials used in the construction of molecular junctions (gold|molecule|gold vs. gold|molecule|graphene). It is shown here that whilst amine-contacted junctions show little influence of the electrode material on molecular conductance due to the similar electrode-molecule coupling through this anchor group to both types of electrodes, the weaker coupling between thiomethyl and ethynyl anchors and the graphene substrate electrode results in a relative enhancement of the DQI effect. This work highlights an additional parameter space to explore QI effects and establishes a new working model based on the electrode materials and anchor groups in modulating QI effects beyond the chemical structure of the molecular backbone.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA