Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Hum Brain Mapp ; 45(1): e26571, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38224544

RESUMO

The ability to detect and assess world-relative object-motion is a critical computation performed by the visual system. This computation, however, is greatly complicated by the observer's movements, which generate a global pattern of motion on the observer's retina. How the visual system implements this computation is poorly understood. Since we are potentially able to detect a moving object if its motion differs in velocity (or direction) from the expected optic flow generated by our own motion, here we manipulated the relative motion velocity between the observer and the object within a stationary scene as a strategy to test how the brain accomplishes object-motion detection. Specifically, we tested the neural sensitivity of brain regions that are known to respond to egomotion-compatible visual motion (i.e., egomotion areas: cingulate sulcus visual area, posterior cingulate sulcus area, posterior insular cortex [PIC], V6+, V3A, IPSmot/VIP, and MT+) to a combination of different velocities of visually induced translational self- and object-motion within a virtual scene while participants were instructed to detect object-motion. To this aim, we combined individual surface-based brain mapping, task-evoked activity by functional magnetic resonance imaging, and parametric and representational similarity analyses. We found that all the egomotion regions (except area PIC) responded to all the possible combinations of self- and object-motion and were modulated by the self-motion velocity. Interestingly, we found that, among all the egomotion areas, only MT+, V6+, and V3A were further modulated by object-motion velocities, hence reflecting their possible role in discriminating between distinct velocities of self- and object-motion. We suggest that these egomotion regions may be involved in the complex computation required for detecting scene-relative object-motion during self-motion.


Assuntos
Percepção de Movimento , Neocórtex , Humanos , Percepção de Movimento/fisiologia , Mapeamento Encefálico , Movimento (Física) , Giro do Cíngulo , Estimulação Luminosa/métodos
2.
Brain Struct Funct ; 229(5): 1021-1045, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38592557

RESUMO

Optic flow provides useful information in service of spatial navigation. However, whether brain networks supporting these two functions overlap is still unclear. Here we used Activation Likelihood Estimation (ALE) to assess the correspondence between brain correlates of optic flow processing and spatial navigation and their specific neural activations. Since computational and connectivity evidence suggests that visual input from optic flow provides information mainly during egocentric navigation, we further tested the correspondence between brain correlates of optic flow processing and that of both egocentric and allocentric navigation. Optic flow processing shared activation with egocentric (but not allocentric) navigation in the anterior precuneus, suggesting its role in providing information about self-motion, as derived from the analysis of optic flow, in service of egocentric navigation. We further documented that optic flow perception and navigation are partially segregated into two functional and anatomical networks, i.e., the dorsal and the ventromedial networks. Present results point to a dynamic interplay between the dorsal and ventral visual pathways aimed at coordinating visually guided navigation in the environment.


Assuntos
Mapeamento Encefálico , Encéfalo , Fluxo Óptico , Navegação Espacial , Humanos , Fluxo Óptico/fisiologia , Encéfalo/fisiologia , Encéfalo/diagnóstico por imagem , Navegação Espacial/fisiologia , Mapeamento Encefálico/métodos , Neuroimagem/métodos , Vias Visuais/fisiologia , Vias Visuais/diagnóstico por imagem , Percepção Visual/fisiologia
3.
Cont Lens Anterior Eye ; 47(3): 102137, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38485618

RESUMO

A common non-spectacle strategy to correct presbyopia is to provide simultaneous images with multifocal optical designs. Understanding the neuroadaptation mechanisms behind multifocal devices usage would have important clinical implications, such as predicting whether patients will be able to tolerate multifocal optics. The aim of this study was to evaluate the brain correlates during the initial wear of multifocal contact lenses (CLs) using high-density visual evoked potential (VEP) measures. Fifteen presbyopes (mean age 51.8 ±â€¯2.6 years) who had previously not used multifocal CLs were enrolled. VEP measures were achieved while participants looked at arrays of 0.5 logMAR Sloan letters in three different optical conditions arranged with CLs: monofocal condition with the optical power appropriate for the distance viewing; multifocal correction with medium addition; and multifocal correction with low addition. An ANOVA for repeated measures showed that the amplitude of the C1 and N1 components significantly dropped with both multifocal low and medium addition CL conditions compared to monofocal CLs. The P1 and P2 components showed opposite behavior with an increase in amplitudes for multifocal compared to monofocal conditions. VEP data indicated that multifocal presbyopia corrections produce a loss of feedforward activity in the primary visual cortex that is compensated by extra feedback activity in extrastriate areas only, in both early and late visual processing.


Assuntos
Lentes de Contato , Potenciais Evocados Visuais , Presbiopia , Córtex Visual , Humanos , Presbiopia/fisiopatologia , Presbiopia/terapia , Masculino , Córtex Visual/fisiopatologia , Pessoa de Meia-Idade , Feminino , Potenciais Evocados Visuais/fisiologia , Acuidade Visual/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA