RESUMO
Melanoma is deadly, physically impairing, and has ongoing treatment deficiencies. Current treatment regimens include surgery, targeted kinase inhibitors, immunotherapy, and combined approaches. Each of these treatments face pitfalls, with diminutive five-year survival in patients with advanced metastatic invasion of lymph and secondary organ tissues. Polyphenolic compounds, including cannabinoids, terpenoids, and flavonoids; both natural and synthetic, have emerging evidence of nutraceutical, cosmetic and pharmacological potential, including specific anti-cancer, anti-inflammatory, and palliative utility. Cannabis sativa is a wellspring of medicinal compounds whose direct and adjunctive application may offer considerable relief for melanoma suffers worldwide. This review aims to address the diverse applications of C. sativa's biocompounds in the scope of melanoma and suggest it as a strong candidate for ongoing pharmacological evaluation.
Assuntos
Canabinoides , Cannabis , Melanoma , Humanos , Cannabis/química , Canabinoides/farmacologia , Canabinoides/uso terapêutico , Canabinoides/química , Terpenos/farmacologia , Melanoma/tratamento farmacológico , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/uso terapêuticoRESUMO
This study examined the effects of gold nanoparticles (AuNPs) and/or ionizing radiation (IR) on the viability and motility of human primary colon epithelial (CCD841) and colorectal adenocarcinoma (SW48) cells as well as human primary epidermal melanocytes (HEM) and melanoma (MM418-C1) cells. AuNPs up to 4 mM had no effect on the viability of these cell lines. The viability of the cancer cells was ~60% following exposure to 5 Gy. Exposure to 5 Gy X-rays or 1 mM AuNPs showed the migration of the cancer cells ~85% that of untreated controls, while co-treatment with AuNPs and IR decreased migration to ~60%. In the non-cancerous cell lines gap closure was enhanced by ~15% following 1 mM AuNPs or 5 Gy treatment, while for co-treatment it was ~22% greater than that for the untreated controls. AuNPs had no effect on cell re-adhesion, while IR enhanced only the re-adhesion of the cancer cell lines but not their non-cancerous counterparts. The addition of AuNPs did not enhance cell adherence. This different reaction to AuNPs and IR in the cancer and normal cells can be attributed to radiation-induced adhesiveness and metabolic differences between tumour cells and their non-cancerous counterparts.
Assuntos
Movimento Celular/efeitos dos fármacos , Ouro/química , Nanopartículas Metálicas/uso terapêutico , Adesão Celular/efeitos dos fármacos , Adesão Celular/efeitos da radiação , Linhagem Celular Tumoral , Movimento Celular/efeitos da radiação , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/efeitos da radiação , Humanos , Melanócitos/efeitos dos fármacos , Melanócitos/efeitos da radiação , Radiação Ionizante , Raios XRESUMO
Melanoma is the fourth most common type of cancer diagnosed in Australians after breast, prostate, and colorectal cancers. While there has been substantial progress in the treatment of cancer in general, malignant melanoma, in particular, is resistant to existing medical therapies requiring an urgent need to develop effective treatments with lesser side effects. Several studies have shown that "cannabinoids", the major compounds of the Cannabis sativaL. plant, can reduce cell proliferation and induce apoptosis in melanoma cells. Despite prohibited use of Cannabis in most parts of the world, in recent years there have been renewed interests in exploiting the beneficial health effects of the Cannabis plant-derived compounds. Therefore, the aim of this study was in the first instance to review the evidence from in vivo studies on the effects of cannabinoids on melanoma. Systematic searches were carried out in PubMed, Embase, Scopus, and ProQuest Central databases for relevant articles published from inception. From a total of 622 potential studies, six in vivo studies assessing the use of cannabinoids for treatment of melanoma were deemed eligible for the final analysis. The findings revealed cannabinoids, individually or combined, reduced tumor growth and promoted apoptosis and autophagy in melanoma cells. Further preclinical and animal studies are required to determine the underlying mechanisms of cannabinoids-mediated inhibition of cancer-signaling pathways. Well-structured, randomized clinical studies on cannabinoid use in melanoma patients would also be required prior to cannabinoids becoming a viable and recognized therapeutic option for melanoma treatment in patients.
Assuntos
Antineoplásicos Fitogênicos/farmacologia , Canabinoides/farmacologia , Melanoma/tratamento farmacológico , Neoplasias Cutâneas/tratamento farmacológico , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Proliferação de Células/efeitos dos fármacos , Ensaios Clínicos como Assunto , Modelos Animais de Doenças , Humanos , Melanócitos/efeitos dos fármacos , Melanócitos/patologia , Melanoma/mortalidade , Melanoma/patologia , Camundongos , Neoplasias Cutâneas/mortalidade , Neoplasias Cutâneas/patologia , Análise de Sobrevida , Carga Tumoral/efeitos dos fármacos , Células Tumorais Cultivadas , Melanoma Maligno CutâneoRESUMO
Prostate cancer is a major cause of death among men worldwide. Recent preclinical evidence implicates cannabinoids as powerful regulators of cell growth and differentiation, as well as potential anti-cancer agents. The aim of this review was to evaluate the effect of cannabinoids on in vivo prostate cancer models. The databases searched included PubMed, Embase, Scopus, and Web of Science from inception to August 2020. Articles reporting on the effect of cannabinoids on prostate cancer were deemed eligible. We identified six studies that were all found to be based on in vivo/xenograft animal models. Results: In PC3 and DU145 xenografts, WIN55,212-2 reduced cell proliferation in a dose-dependent manner. Furthermore, in LNCaP xenografts, WIN55,212-2 reduced cell proliferation by 66-69%. PM49, which is a synthetic cannabinoid quinone, was also found to result in a significant inhibition of tumor growth of up to 90% in xenograft models of LNCaP and 40% in xenograft models of PC3 cells, respectively. All studies have reported that the treatment of prostate cancers in in vivo/xenograft models with various cannabinoids decreased the size of the tumor, the outcomes of which depended on the dose and length of treatment. Within the limitation of these identified studies, cannabinoids were shown to reduce the size of prostate cancer tumors in animal models. However, further well-designed and controlled animal studies are warranted to confirm these findings.
Assuntos
Benzoxazinas/uso terapêutico , Canabinoides/uso terapêutico , Morfolinas/uso terapêutico , Naftalenos/uso terapêutico , Neoplasias da Próstata/tratamento farmacológico , Animais , Benzoxazinas/farmacologia , Canabinoides/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Masculino , Morfolinas/farmacologia , Naftalenos/farmacologia , Células PC-3 , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
BACKGROUND: The fibrinolytic system and its inhibitors play a number of roles, apart from their function in blood haemostasis and thrombosis, namely in ovarian folliculogenesis and in ovulation. Plasminogen is converted to active plasmin at the time of follicular rupture through a decrease in plasminogen activator inhibitor-1 (PAI-1) and an increase in plasminogen activators. Oligo-/anovulation and follicle arrest are key characteristics of PCOS, but studies evaluating fibrinolytic/proteolytic markers within human or animal PCOS ovaries are lacking. We aimed to investigate and compare the expression and distribution of the plasminogen system markers in PCOS and control ovaries. METHODS: A hyperandrogenised PCOS mouse model was used that mimics the ovarian, endocrine and metabolic features of the human condition. Immunohistochemistry and digital image analysis were used to investigate and compare fibrinolytic/proteolytic markers plasminogen, plasminogen/plasmin, tissue plasminogen activator, urokinase plasminogen activator and inhibitor PAI-1 in PCOS and control ovaries. Student's t-test was used to compare data sets for normally distributed data and Wilcoxon-Mann Whitney test for non-normally distributed data. RESULTS: We noted differences in the ovarian distribution of PAI-1 that was expressed throughout the PCOS ovary, unlike the peripheral distribution observed in control ovaries. Plasminogen was present in small follicles only in PCOS ovaries but not in small follicles of control ovaries. When we assessed and compared PAI-1 expression within follicles of different developmental stages we also noted significant differences for both the PCOS and control ovaries. While we noted differences in distribution and expression within specific ovarian structures, no differences were noted in the overall ovarian expression of markers assessed between acyclical PCOS mice and control mice at the diestrus stage of the estrous cycle. CONCLUSIONS: Our novel study, that comprehensively assessed the fibrinolytic/proteolytic system in the mouse ovary, showed the expression, differential localisation and a potential role for the plasminogen system in the physiological mouse ovary and in PCOS. Androgens may be involved in regulating expression of the ovarian plasminogen system. Further studies evaluating these markers at different time-points of ovulation may help to further clarify both physiological and potential pathological actions these markers play in ovulatory processes distorted in PCOS.
Assuntos
Ovário/metabolismo , Plasminogênio/metabolismo , Síndrome do Ovário Policístico/metabolismo , Animais , Feminino , Imuno-Histoquímica , Camundongos , Inibidor 1 de Ativador de Plasminogênio/metabolismoRESUMO
The effect of 15 nm-sized gold nanoparticles (AuNPs) and/or ionizing radiation (IR) on the migration and adhesion of human prostate (DU145) and lung (A549) cancer cell lines was investigated. Cell migration was measured by observing the closing of a gap created by a pipette tip on cell monolayers grown in 6-well plates. The ratio of the gap areas at 0 h and 24 h were used to calculate the relative migration. The relative migration of cells irradiated with 5 Gy was found to be 89% and 86% for DU145 and A549 cells respectively. When the cells were treated with 1 mM AuNPs this fell to ~75% for both cell lines. However, when the cells were treated with both AuNPs and IR an additive effect was seen, as the relative migration rate fell to ~60%. Of interest was that when the cells were exposed to either 2 or 5 Gy IR, their ability to adhere to the surface of a polystyrene culture plate was significantly enhanced, unlike that seen for AuNPs. The delays in gap filling (cell migration) in cells treated with IR and/or AuNPs can be attributed to cellular changes which also may have altered cell motility. In addition, changes in the cytoskeleton of the cancer cells may have also affected adhesiveness and thus the cancer cell's motility response to IR.
Assuntos
Movimento Celular/efeitos da radiação , Ouro/farmacologia , Neoplasias Pulmonares/patologia , Nanopartículas Metálicas/química , Neoplasias da Próstata/patologia , Radiação Ionizante , Adesão Celular/efeitos dos fármacos , Adesão Celular/efeitos da radiação , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Endocitose , Humanos , MasculinoRESUMO
Transforming growth factor-ß (TGF-ß) is a pleiotropic growth factor implicated in the development of atherosclerosis for its role in mediating glycosaminoglycan (GAG) chain hyperelongation on the proteoglycan biglycan, a phenomenon that increases the binding of atherogenic lipoproteins in the vessel wall. Phosphorylation of the transcription factor Smad has emerged as a critical step in the signaling pathways that control the synthesis of biglycan, both the core protein and the GAG chains. We have used flavopiridol, a well-known cyclin-dependent kinase inhibitor, to study the role of linker region phosphorylation in the TGF-ß-stimulated synthesis of biglycan. We used radiosulfate incorporation and SDS-PAGE to assess proteoglycan synthesis, real-time polymerase chain reaction to assess gene expression, and chromatin immunoprecipitation to assess the binding of Smads to the promoter region of GAG Synthesizing genes. Flavopiridol blocked TGF-ß-stimulated synthesis of mRNA for the GAG synthesizing enzymes, and chondroitin 4-sulfotransferase (C4ST-1), chondroitin sulfate synthase-1 (ChSy-1) and TGF-ß-mediated proteoglycans synthesis as well as GAG hyperelongation. Flavopiridol blocked TGF-ß-stimulated Smad2 phosphorylation at both the serine triplet and the isolated threonine residue in the linker region. The binding of Smad to the promoter region of the C4ST-1 and ChSy-1 genes was stimulated by TGF-ß, and this response was blocked by flavopiridol, demonstrating that linker region phosphorylated Smad can pass to the nucleus and positively regulate transcription. These results demonstrate the validity of the kinases, which phosphorylate the Smad linker region as potential therapeutic target(s) for the development of an agent to prevent atherosclerosis.
Assuntos
Biglicano/biossíntese , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Flavonoides/farmacologia , Piperidinas/farmacologia , Proteína Smad2/química , Proteína Smad2/metabolismo , Fator de Crescimento Transformador beta/farmacologia , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Glicosaminoglicanos/metabolismo , Humanos , Músculo Liso Vascular/citologia , Fosforilação/efeitos dos fármacos , Receptor do Fator de Crescimento Transformador beta Tipo I/metabolismo , Transdução de Sinais/efeitos dos fármacosRESUMO
Cancer along with cardiovascular disease are the main causes of death in the industrialised countries around the World. Conventional cancer treatments are losing their therapeutic uses due to drug resistance, lack of tumour selectivity and solubility and as such there is a need to develop new therapeutic agents. Therapeutic peptides are a promising and a novel approach to treat many diseases including cancer. They have several advantages over proteins or antibodies: as they are (a) easy to synthesise, (b) have a high target specificity and selectivity and (c) have low toxicity. Therapeutic peptides do have some significant drawbacks related to their stability and short half-life. In this review, strategies used to overcome peptide limitations and to enhance their therapeutic effect will be compared. The use of short cell permeable peptides that interfere and inhibit protein-protein interactions will also be evaluated.
Assuntos
Antineoplásicos/uso terapêutico , Neoplasias/tratamento farmacológico , Peptídeos/uso terapêutico , HumanosRESUMO
The discovery of the BRAFV600E mutation led to the development of vemurafenib (PLX4032), a selective BRAF inhibitor specific to the kinase, for the treatment of metastatic melanomas. However, initial success of the drug was dampened by the development of acquired resistance. Melanoma was shown to relapse in patients following treatment with vemurafenib which eventually led to patients' deaths. It has been proposed that mechanisms of resistance can be due to (1) reactivation of the mitogen-activated protein kinase (MAPK) signalling pathway via secondary mutations, amplification or activation of target kinase(s), (2) the bypass of oncogenic pathway via activation of alternative signalling pathways, (3) other uncharacterized mechanisms. Studies showed that receptor tyrosine kinases (RTK) such as PDGFRß, IGF1R, EGFR and c-Met were overexpressed in melanoma cells. Along with increased secretion of growth factors such as HGF and TGF-α, this will trigger intracellular signalling cascades. This review discusses the role MAPK and Phosphatidylinositol-3-kinase-protein kinase B-mammalian target of rapamycin (PI3K-AKT-mTOR) pathways play in the mechanism of resistance of melanomas.
Assuntos
Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Melanoma/enzimologia , Melanoma/patologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Transdução de Sinais , Animais , Humanos , Modelos Biológicos , Proteínas Proto-Oncogênicas B-raf/metabolismoRESUMO
Momordica cochinchinensis (Cucurbitaceae) is the richest source of lycopene and ß-carotene of all known fruits but the influences of collection sites, variety and environment on carotenoid accumulation is unknown. This study analysed the carotenoid content of 44 M. cochinchinensis aril samples collected from Australia, Thailand and Vietnam using HPLC, UV-visible spectrophotometry and compared with the colorimetry method. The highest lycopene content was observed in samples collected from Ha Noi (7.76 mg/g) of Northern Vietnam and Lam Ha (6.45 mg/g) and Lam Dong (6.64 mg/g) provinces of Central Vietnam. The highest ß-carotene content was observed in a sample from Nam Dinh (9.60 mg/g) in Northern Vietnam while a variety from Hoa Binh province in Northern Vietnam had high contents of both lycopene (5.17 mg/g) and ß-carotene (5.66 mg/g). Lycopene content was higher in samples collected from low temperatures (<14 °C) and higher elevations whilst ß-carotene content was greatest at temperatures between 27 and 33 °C. Crop improvement for increased lycopene and ß-carotene requires rapid and accurate methods of quantification. All three analytical methods utilised were in agreement for lycopene quantification. The (a*/b*)2 transformed colour value resulted in more linear relationship for lycopene indicating that colorimetry method could potentially be developed to select lycopene rich fruits in the field.
RESUMO
Polycystic ovarian syndrome (PCOS) affects 12 to 19% of women and has reproductive and metabolic features (endothelial dysfunction, increased diabetes, and cardiovascular risk factors). It also appears to have altered coagulation and fibrinolysis with a prothrombotic state with epidemiological evidence of increased venous thromboembolism. We aimed to comprehensively assess hemostasis in women with PCOS versus control women. In an established case-control cohort of lean, overweight, and obese women with (n = 107) and without PCOS (n = 67), with existing measures of plasminogen activator inhibitor 1 (PAI-1), asymmetric dimethylarginine (ADMA), hormonal, and metabolic markers, we also assessed prothrombin fragments 1 and 2 (PF1 & 2), plasminogen, tissue plasminogen activator (tPA), and thrombin generation (TG). Higher levels of ADMA (0.70 vs. 0.39 µmol/L, p < 0.01), PAI-1 (4.80 vs. 3.66 U/mL, p < 0.01), and plasminogen (118.39 vs. 108.46%, p < 0.01) were seen in PCOS versus controls, and persisted after adjustment for age and body mass index (BMI). PF1 & 2 was marginally lower (180.0 vs. 236.0 pmol/L, p = 0.05), whereas tPA and TG were not different between groups, after adjustment for age and BMI. Significant relationships were observed between hormonal and metabolic factors with ADMA and PAI-1. We demonstrate impaired fibrinolysis in PCOS. In the context of abnormal endothelial function and known hormonal and metabolic abnormalities, this finding may underpin an increased risk of cardiovascular disease and venous thrombosis in PCOS.
Assuntos
Proteínas Sanguíneas/metabolismo , Hemostasia , Técnicas Hemostáticas , Síndrome do Ovário Policístico/sangue , Síndrome do Ovário Policístico/terapia , Tromboembolia Venosa/sangue , Tromboembolia Venosa/prevenção & controle , Adolescente , Adulto , Fatores Etários , Índice de Massa Corporal , Estudos de Casos e Controles , Feminino , Humanos , Pessoa de Meia-Idade , Obesidade/sangue , Obesidade/complicações , Obesidade/terapia , Síndrome do Ovário Policístico/complicações , Tromboembolia Venosa/etiologiaRESUMO
G protein-coupled receptor (GPCR) signalling is mediated through transactivation-independent signalling pathways or the transactivation of protein tyrosine kinase receptors and the recently reported activation of the serine/threonine kinase receptors, most notably the transforming growth factor-ß receptor family. Since the original observation of GPCR transactivation of protein tyrosine kinase receptors, there has been considerable work on the mechanism of transactivation and several pathways are prominent. These pathways include the "triple membrane bypass" pathway and the generation of reactive oxygen species. The recent recognition of GPCR transactivation of serine/threonine kinase receptors enormously broadens the GPCR signalling paradigm. It may be predicted that the transactivation of serine/threonine kinase receptors would have mechanistic similarities with transactivation of tyrosine kinase pathways; however, initial studies suggest that these two transactivation pathways are mechanistically distinct. Important questions are the relative importance of tyrosine and serine/threonine transactivation pathways, the contribution of transactivation to overall GPCR signalling, mechanisms of transactivation and the range of cell types in which this phenomenon occurs. The ultimate significance of transactivation-dependent signalling remains to be defined but it appears to be prominent and if so will represent a new cell signalling frontier.
Assuntos
Receptores Proteína Tirosina Quinases/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animais , Humanos , Receptores Acoplados a Proteínas G/genética , Transdução de Sinais , Ativação Transcricional , Quinases Associadas a rho/metabolismoRESUMO
BACKGROUND: Clinacanthus nutans (Burm. f.) Lindau leaves are widely used by cancer patients and the leaf extracts possess cytotoxic and antiproliferative effects on several human cancer cell lines. However, the effect of C. nutans leaf extract on human melanoma, which is the least common but most fatal form of skin cancer and one of the most common cancers diagnosed in both sexes worldwide, is unknown. There is also limited information on whether the bioactivity of extracts differs between C. nutans leaves grown in different geographical locations with varying environmental conditions. METHODS: The present study, for the first time, compared and demonstrated the cytotoxicity of the crude methanol extracts of C. nutans leaves from 11 different locations in Malaysia, Thailand and Vietnam, with diverse environmental conditions against D24 melanoma cells through WST-8 assay. The percentage of apoptotic cells following treatment with the most active extract was determined in a dose- and time-dependent manner by a cytofluorometric double staining technique. Biochemical and morphological changes in the treated and untreated cells were examined by fluorescence and transmission electron microscopy techniques, respectively, to further affirm the induction of apoptosis. RESULTS: The leaves of plants grown at higher elevations and lower air temperatures were more cytotoxic to the D24 melanoma cells than those grown at lower elevations and higher air temperatures, with the leaf extract from Chiang Dao, Chiang Mai, Thailand exhibited the highest cytotoxicity (24 h EC50: 0.95 mg/mL and 72 h EC50: 0.77 mg/mL). This most active crude extract induced apoptotic cell death in the D24 cells in a dose- and time-dependent manner. Typical biochemical and morphological characteristics of apoptosis were also observed in the treated D24 cells. CONCLUSIONS: The results, showing the cytotoxicity of C. nutans and the induction of apoptosis in D24 cells, are significant and useful to facilitate the development of C. nutans as a potential novel chemotherapeutic agent for the management of skin melanoma.
Assuntos
Acanthaceae/química , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Extratos Vegetais/toxicidade , Folhas de Planta/química , Antineoplásicos/química , Linhagem Celular Tumoral , Humanos , Extratos Vegetais/química , TailândiaRESUMO
Peptidyl-prolyl cis/trans isomerases (PPIases) are a conserved group of enzymes that catalyse the conversion between cis and trans conformations of proline imidic peptide bonds. These enzymes play critical roles in regulatory mechanisms of cellular function and pathophysiology of disease. There are three different classes of PPIases and increasing interest in the development of specific PPIase inhibitors. Cyclosporine A, FK506, rapamycin and juglone are known PPIase inhibitors. Herein, we review recent advances in elucidating the role and regulation of the PPIase family in vascular disease. We focus on peptidyl-prolyl cis/trans isomerase NIMA-interacting 1 (Pin1), an important member of the PPIase family that plays a role in cell cycle progression, gene expression, cell signalling and cell proliferation. In addition, Pin1 may be involved in atherosclerosis. The unique role of Pin1 as a molecular switch that impacts on multiple downstream pathways necessitates the evaluation of a highly specific Pin1 inhibitor to aid in potential therapeutic drug discovery.
Assuntos
Doenças Cardiovasculares/metabolismo , Peptidilprolil Isomerase/metabolismo , Animais , Descoberta de Drogas/métodos , Humanos , Peptidilprolil Isomerase de Interação com NIMA , Ligação Proteica/fisiologiaRESUMO
Oxidative damage to cells and tissues from free radicals induced by ultraviolet (UV) irradiation can be attenuated by sunscreen components, such as ZnO and TiO2 nanoparticles (NPs). Although it is known that reactive oxygen species (ROS) are generated by cells upon exposure to ZnO and TiO2 NPs, it is unknown to what extent the amount generated is altered with UV co-exposure. As it is a critical component for determining the relative risk of these NPs when used in sunscreen formulations, we have investigated ROS generation by these NPs in human THP-1 monocyte immune cells following UVA co-exposure. Whilst the applied UVA dose (6.7 J cm(-2)) did not alter cell viability after 24 h, it induced significant ROS production - causing a 7-fold increase in intracellular peroxide and 3.3-fold increase in mitochondrial superoxide levels after 1 h. However, co-exposure to NPs and UVA generated the same or less ROS than with UVA exposure alone, with the exception of anatase TiO2, which showed significantly increased levels. These findings indicate that ROS generation from nanosunscreens is, in most cases, an insignificant contributor to the overall risk associated with oxidative stress from UVA exposure itself.
Assuntos
Monócitos/metabolismo , Nanopartículas/química , Espécies Reativas de Oxigênio/metabolismo , Protetores Solares/química , Protetores Solares/farmacologia , Raios Ultravioleta , Sobrevivência Celular , Humanos , Monócitos/efeitos dos fármacos , Monócitos/imunologia , Monócitos/efeitos da radiação , Estresse Oxidativo , Espécies Reativas de Oxigênio/efeitos da radiação , Titânio/química , Titânio/farmacologia , Células Tumorais Cultivadas , Óxido de Zinco/química , Óxido de Zinco/farmacologiaRESUMO
INTRODUCTION: Primarily used as ultrasound contrast agents, microbubbles have recently emerged as a versatile therapeutic vector that can be 'burst' to deliver payloads in the presence of suitably optimised ultrasound fields. Ultrasound-stimulated microbubbles (USMB) have recently demonstrated improvements in treatment outcomes across a variety of clinical applications. This scoping review investigates whether this potential translates into the context of radiation therapy by evaluating the application of this technology across all three phases of radiation action. METHODS: Primary research articles, excluding poster presentations and conference proceedings, were identified through systematic searches of the PubMed NCBI/Medline, Embase/OVID, Web of Science and CINAHL/EBSCOhost databases, with additional articles identified via manual Google Scholar searching. Articles were dual screened for inclusion using the Covidence systematic review platform and classified against all three phases of radiation action. RESULTS: Overall, 57 eligible publications from a total of 1389 identified articles were included in the review, with studies dating back to 2012. Study heterogeneity prevented formal statistical analysis; however, most articles reported improved outcomes using USMB in the presence of radiation compared to that of radiation alone. These improvements appear to result from the use of USMB as either a biovascular disruptor causing tumour cell damage via indirect mechanisms, or as a localised treatment vector that directly increases tumour cell uptake of other therapeutic and physical agents designed to enhance radiation action. CONCLUSIONS: USMB demonstrate exciting potential to enhance the effects of radiation treatments due to their versatility and capacity to target all three phases of radiation action.
Assuntos
Microbolhas , Neoplasias , Microbolhas/uso terapêutico , Humanos , Neoplasias/radioterapia , Neoplasias/diagnóstico por imagem , Meios de Contraste , Terapia por Ultrassom/métodosRESUMO
Melanoma is one of the leading fatal forms of cancer, yet from a treatment perspective, we have minimal control over its reoccurrence and resistance to current pharmacotherapies. The endocannabinoid system (ECS) has recently been accepted as a multifaceted homeostatic regulator, influencing various physiological processes across different biological compartments, including the skin. This review presents an overview of the pathophysiology of melanoma, current pharmacotherapy used for treatment, and the challenges associated with the different pharmacological approaches. Furthermore, it highlights the utility of cannabinoids as an additive remedy for melanoma by restoring the balance between downregulated immunomodulatory pathways and elevated inflammatory cytokines during chronic skin conditions as one of the suggested critical approaches in treating this immunogenic tumor. This article is categorized under: Cancer > Molecular and Cellular Physiology.
Assuntos
Canabinoides , Melanoma , Humanos , Canabinoides/farmacologia , Melanoma/tratamento farmacológico , Estudos Prospectivos , Endocanabinoides/uso terapêutico , Pele/metabolismoRESUMO
Research suggests the potential of using cannabinoid-derived compounds to function as anticancer agents against melanoma cells. Our recent study highlighted the remarkable in vitro anticancer effects of PHEC-66, an extract from Cannabis sativa, on the MM418-C1, MM329, and MM96L melanoma cell lines. However, the complete molecular mechanism behind this action remains to be elucidated. This study aims to unravel how PHEC-66 brings about its antiproliferative impact on these cell lines, utilising diverse techniques such as real-time polymerase chain reaction (qPCR), assays to assess the inhibition of CB1 and CB2 receptors, measurement of reactive oxygen species (ROS), apoptosis assays, and fluorescence-activated cell sorting (FACS) for apoptosis and cell cycle analysis. The outcomes obtained from this study suggest that PHEC-66 triggers apoptosis in these melanoma cell lines by increasing the expression of pro-apoptotic markers (BAX mRNA) while concurrently reducing the expression of anti-apoptotic markers (Bcl-2 mRNA). Additionally, PHEC-66 induces DNA fragmentation, halting cell progression at the G1 cell cycle checkpoint and substantially elevating intracellular ROS levels. These findings imply that PHEC-66 might have potential as an adjuvant therapy in the treatment of malignant melanoma. However, it is essential to conduct further preclinical investigations to delve deeper into its potential and efficacy.
Assuntos
Cannabis , Cisteína/análogos & derivados , Melanoma , Melanoma/patologia , Espécies Reativas de Oxigênio/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Morte Celular , Agonistas de Receptores de Canabinoides/farmacologia , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , RNA Mensageiro/uso terapêuticoRESUMO
Ultraviolet (UV) radiation activates cell signaling pathways in melanocytes. As a result of altered signaling pathways and UV-induced cellular damage, melanocytes can undergo oncogenesis and develop into melanomas. In this study, we investigated the effect of UV-radiation on p38 MAPK (mitogen-activated protein kinase), JNK and NFκB pathways to determine which plays a major role in stimulating TNFα secretion in human HEM (melanocytes) and MM96L (melanoma) cells. MM96L cells exhibited 3.5-fold higher p38 activity than HEM cells at 5 min following UVA + B radiation and 1.6-fold higher JNK activity at 15-30 min following UVB+A radiation, while NFκB was minimally activated in both cells. Irradiated HEM cells had the greatest fold of TNFα secretion (UVB: 109-fold, UVA + B: 103-fold & UVB+A: 130-fold) when co-exposed to IL1α. The p38 inhibitor, SB202190, inhibited TNFα release by 93% from UVB-irradiated HEM cells. In the UVB-irradiated MM96L cells, both SB202190 and sulfasalazine (NFκB inhibitor) inhibited TNFα release by 52%. Although, anisomycin was a p38 MAPK activator, it inhibited TNFα release in UV-irradiated cells. This suggests that UV-mediated TNFα release may occur via different p38 pathway intermediates compared to those stimulated by anisomycin. As such, further studies into the functional role p38 MAPK plays in regulating TNFα release in UV-irradiated melanocyte-derived cells are warranted.
Assuntos
Melanócitos/enzimologia , Fator de Necrose Tumoral alfa/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Anisomicina/farmacologia , Antracenos/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos da radiação , Humanos , Imidazóis/farmacologia , Interleucina-1alfa/fisiologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos da radiação , Melanócitos/metabolismo , Melanócitos/efeitos da radiação , Melanoma , Proteína Quinase 8 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 8 Ativada por Mitógeno/metabolismo , Proteína Quinase 9 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 9 Ativada por Mitógeno/metabolismo , NF-kappa B/antagonistas & inibidores , NF-kappa B/metabolismo , Fosforilação , Processamento de Proteína Pós-Traducional , Piridinas/farmacologia , Sulfassalazina/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidoresRESUMO
Momordica cochinchinensis is a herbal medicine used throughout Asia and this study investigated the antimelanoma potentials and molecular mechanisms of M. cochinchinensis seed with emphasis on extraction to optimise bioactivity. Overall, the aqueous extract was superior, with a wider diversity and higher concentration of proteins and peptides that was more cytotoxic to the melanoma cells than other extraction solvents. The IC50 of the aqueous extract on melanoma cells were similar to treatment with current anticancer drugs, vemurafenib and cisplatin. This cytotoxicity was cancer-specific with lower cytotoxic effects on HaCaT epidermal keratinocytes. Cytotoxicity correlated with MAPK signalling pathways leading to apoptosis and necrosis induced by triggering tumour necrosis factor receptor-1 (TNFR1), reducing the expression of nuclear factor kappa B (NF-kB), and suppression of BRAF/MEK. This efficacy of M. cochinchinensis seed extracts on melanoma cells provides a platform for future clinical trials as potent adjunctive therapy for metastatic melanoma.