Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Brain ; 132(Pt 9): 2336-49, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19641103

RESUMO

DYT1 dystonia is a severe form of inherited dystonia, characterized by involuntary twisting movements and abnormal postures. It is linked to a deletion in the dyt1 gene, resulting in a mutated form of the protein torsinA. The penetrance for dystonia is incomplete, but both clinically affected and non-manifesting carriers of the DYT1 mutation exhibit impaired motor learning and evidence of altered motor plasticity. Here, we characterized striatal glutamatergic synaptic plasticity in transgenic mice expressing either the normal human torsinA or its mutant form, in comparison to non-transgenic (NT) control mice. Medium spiny neurons recorded from both NT and normal human torsinA mice exhibited normal long-term depression (LTD), whereas in mutant human torsinA littermates LTD could not be elicited. In addition, although long-term potentiation (LTP) could be induced in all the mice, it was greater in magnitude in mutant human torsinA mice. Low-frequency stimulation (LFS) can revert potentiated synapses to resting levels, a phenomenon termed synaptic depotentiation. LFS induced synaptic depotentiation (SD) both in NT and normal human torsinA mice, but not in mutant human torsinA mice. Since anti-cholinergic drugs are an effective medical therapeutic option for the treatment of human dystonia, we reasoned that an excess in endogenous acetylcholine could underlie the synaptic plasticity impairment. Indeed, both LTD and SD were rescued in mutant human torsinA mice either by lowering endogenous acetylcholine levels or by antagonizing muscarinic M1 receptors. The presence of an enhanced acetylcholine tone was confirmed by the observation that acetylcholinesterase activity was significantly increased in the striatum of mutant human torsinA mice, as compared with both normal human torsinA and NT littermates. Moreover, we found similar alterations of synaptic plasticity in muscarinic M2/M4 receptor knockout mice, in which an increased striatal acetylcholine level has been documented. The loss of LTD and SD on one hand, and the increase in LTP on the other, demonstrate that a 'loss of inhibition' characterizes the impairment of synaptic plasticity in this model of DYT1 dystonia. More importantly, our results indicate that an unbalanced cholinergic transmission plays a pivotal role in these alterations, providing a clue to understand the ability of anticholinergic agents to restore motor deficits in dystonia.


Assuntos
Acetilcolina/fisiologia , Corpo Estriado/fisiopatologia , Distúrbios Distônicos/fisiopatologia , Chaperonas Moleculares/genética , Plasticidade Neuronal/fisiologia , Acetilcolinesterase/metabolismo , Animais , Corpo Estriado/enzimologia , Modelos Animais de Doenças , Distúrbios Distônicos/enzimologia , Distúrbios Distônicos/genética , Potenciais Pós-Sinápticos Excitadores/fisiologia , Genótipo , Camundongos , Camundongos Transgênicos , Transdução de Sinais/fisiologia , Sinapses/fisiologia
2.
Parkinsonism Relat Disord ; 74: 57-63, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32335490

RESUMO

INTRODUCTION: Increasing evidence demonstrates the relevant association between Parkinson's disease (PD) and vascular diseases/risk factors, as well as a worse clinico-pathological progression in those patients with vascular comorbidity. The mechanisms underlying this relationship have not been clarified yet, although their comprehension is critical in a perspective of disease-modifying treatments development or prevention. METHODS: We performed an experimental protocol of ischemic injury (glucose-oxygen deprivation, OGD) on PTEN-induced kinase 1 knockout (PINK1-/-) mice, a well-established PD model, looking at both electrophysiological and morphological changes in basal ganglia. In addition, 253 PD patients were retrospectively analysed, to estimate the prevalence of vascular risk factors. RESULTS: In PINK1-/- mice, the OGD protocol induced electrophysiological (prolonged depolarization) and morphological alterations (picnotic cells, cellular loss and swelling, thickening of nuclear chromatin) in striatal medium spiny neurons and nigral dopaminergic neurons. Vascular comorbidity occurred in 75% of PD patients. CONCLUSIONS: The ischemic injury precipitates neuronal vulnerability in basal ganglia of PINK1-/- mice, probably through an impairment of mitochondrial metabolism and higher oxidative stress. These experimental data may provide a potential mechanistic explanation for both the association between vascular diseases and PD and their reciprocal interactions in determining the clinico-pathological burden of PD patients.


Assuntos
Gânglios da Base , Isquemia Encefálica , Mitocôndrias , Estresse Oxidativo , Doença de Parkinson , Doenças Vasculares , Idoso , Idoso de 80 Anos ou mais , Animais , Gânglios da Base/metabolismo , Gânglios da Base/patologia , Gânglios da Base/fisiopatologia , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Isquemia Encefálica/fisiopatologia , Comorbidade , Modelos Animais de Doenças , Neurônios Dopaminérgicos , Feminino , Humanos , Interneurônios , Masculino , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Mitocôndrias/metabolismo , Estresse Oxidativo/fisiologia , Doença de Parkinson/epidemiologia , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Doença de Parkinson/fisiopatologia , Proteínas Quinases/genética , Estudos Retrospectivos , Fatores de Risco , Doenças Vasculares/epidemiologia
3.
J Neurosci ; 28(24): 6258-63, 2008 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-18550768

RESUMO

Muscarinic autoreceptors regulate cholinergic tone in the striatum. We investigated the functional consequences of genetic deletion of striatal muscarinic autoreceptors by means of electrophysiological recordings from either medium spiny neurons (MSNs) or cholinergic interneurons (ChIs) in slices from single M(4) or double M(2)/M(4) muscarinic acetylcholine receptor (mAChR) knock-out (-/-) mice. In control ChIs, the muscarinic agonist oxotremorine (300 nM) produced a self-inhibitory outward current that was mostly reduced in M(4)(-/-) and abolished in M(2)/M(4)(-/-) mice, suggesting an involvement of both M(2) and M(4) autoreceptors. In MSNs from both M(4)(-/-) and M(2)/M(4)(-/-) mice, muscarine caused a membrane depolarization that was prevented by the M(1) receptor-preferring antagonist pirenzepine (100 nM), suggesting that M(1) receptor function was unaltered. Acetylcholine has been involved in striatal long-term potentiation (LTP) or long-term depression (LTD) induction. Loss of muscarinic autoreceptor function is predicted to affect synaptic plasticity by modifying striatal cholinergic tone. Indeed, high-frequency stimulation of glutamatergic afferents failed to induce LTD in MSNs from both M(4)(-/-) and M(2)/M(4)(-/-) mice, as well as in wild-type mice pretreated with the M(2)/M(4) antagonist AF-DX384 (11-[[2-[(diethylamino)methyl]-1-piperidinyl]acetyl]-5,1 1-dihydro-6H-pyrido[2,3b][1,4] benzodiazepin-6-one). Interestingly, LTD could be restored by either pirenzepine (100 nM) or hemicholinium-3 (10 microM), a depletor of endogenous ACh. Conversely, LTP induction did not show any difference among the three mouse strains and was prevented by pirenzepine. These results demonstrate that M(2)/M(4) muscarinic autoreceptors regulate ACh release from striatal ChIs. As a consequence, endogenous ACh drives the polarity of bidirectional synaptic plasticity.


Assuntos
Potenciação de Longa Duração/genética , Depressão Sináptica de Longo Prazo/genética , Neurônios/fisiologia , Receptor Muscarínico M2/deficiência , Receptor Muscarínico M4/deficiência , Acetilcolina/metabolismo , Animais , Autorreceptores/deficiência , Corpo Estriado/citologia , Relação Dose-Resposta à Radiação , Estimulação Elétrica/métodos , Técnicas In Vitro , Potenciação de Longa Duração/efeitos dos fármacos , Potenciação de Longa Duração/efeitos da radiação , Depressão Sináptica de Longo Prazo/efeitos dos fármacos , Depressão Sináptica de Longo Prazo/efeitos da radiação , Camundongos , Camundongos Knockout , Antagonistas Muscarínicos/farmacologia , Neurônios/efeitos dos fármacos , Neurônios/efeitos da radiação , Técnicas de Patch-Clamp/métodos
4.
J Neurochem ; 110(2): 613-21, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19457102

RESUMO

Parkin is the most common causative gene of juvenile and early-onset familial Parkinson's diseases and is thought to function as an E3 ubiquitin ligase in the ubiquitin-proteasome system. However, it remains unclear how loss of Parkin protein causes dopaminergic dysfunction and nigral neurodegeneration. To investigate the pathogenic mechanism underlying these mutations, we used parkin-/- mice to study its physiological function in the nigrostriatal circuit. Amperometric recordings showed decreases in evoked dopamine release in acute striatal slices of parkin-/- mice and reductions in the total catecholamine release and quantal size in dissociated chromaffin cells derived from parkin-/- mice. Intracellular recordings of striatal medium spiny neurons revealed impairments of long-term depression and long-term potentiation in parkin-/- mice, whereas long-term potentiation was normal in the Schaeffer collateral pathway of the hippocampus. Levels of dopamine receptors and dopamine transporters were normal in the parkin-/- striatum. These results indicate that Parkin is involved in the regulation of evoked dopamine release and striatal synaptic plasticity in the nigrostriatal pathway, and suggest that impairment in evoked dopamine release may represent a common pathophysiological change in recessive parkinsonism.


Assuntos
Corpo Estriado/metabolismo , Dopamina/metabolismo , Plasticidade Neuronal/fisiologia , Ubiquitina-Proteína Ligases/deficiência , Ubiquitina-Proteína Ligases/metabolismo , Animais , Corpo Estriado/fisiopatologia , Estimulação Elétrica , Feminino , Hipocampo/metabolismo , Hipocampo/fisiopatologia , Depressão Sináptica de Longo Prazo/genética , Depressão Sináptica de Longo Prazo/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Plasticidade Neuronal/genética , Membranas Sinápticas/genética , Membranas Sinápticas/metabolismo , Membranas Sinápticas/patologia , Ubiquitina-Proteína Ligases/genética
5.
J Neurochem ; 109(4): 1096-105, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19519781

RESUMO

Alterations of striatal synaptic transmission have been associated with several motor disorders involving the basal ganglia, such as Parkinson's disease. For this reason, we investigated the role of group-III metabotropic glutamate (mGlu) receptors in regulating synaptic transmission in the striatum by electrophysiological recordings and by using our novel orthosteric agonist (3S)-3-[(3-amino-3-carboxypropyl(hydroxy)phosphinyl)-hydroxymethyl]-5-nitrothiophene (LSP1-3081) and l-2-amino-4-phosphonobutanoate (L-AP4). Here, we show that both drugs dose-dependently reduced glutamate- and GABA-mediated post-synaptic potentials, and increased the paired-pulse ratio. Moreover, they decreased the frequency, but not the amplitude, of glutamate and GABA spontaneous and miniature post-synaptic currents. Their inhibitory effect was abolished by (RS)-alpha-cyclopropyl-4-phosphonophenylglycine and was lost in slices from mGlu4 knock-out mice. Furthermore, (S)-3,4-dicarboxyphenylglycine did not affect glutamate and GABA transmission. Finally, intrastriatal LSP1-3081 or L-AP4 injection improved akinesia measured by the cylinder test. These results demonstrate that mGlu4 receptor selectively modulates striatal glutamate and GABA synaptic transmission, suggesting that it could represent an interesting target for selective pharmacological intervention in movement disorders involving basal ganglia circuitry.


Assuntos
Antiparkinsonianos/uso terapêutico , Ácido Glutâmico/fisiologia , Neostriado/fisiologia , Doença de Parkinson Secundária/tratamento farmacológico , Doença de Parkinson Secundária/fisiopatologia , Receptores de Glutamato Metabotrópico/fisiologia , Transmissão Sináptica/efeitos dos fármacos , Ácido gama-Aminobutírico/fisiologia , Aminobutiratos/farmacologia , Animais , Relação Dose-Resposta a Droga , Eletrofisiologia , Agonistas de Aminoácidos Excitatórios/farmacologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Agonistas GABAérgicos/farmacologia , Masculino , Movimento/efeitos dos fármacos , Oxidopamina , Doença de Parkinson Secundária/induzido quimicamente , Técnicas de Patch-Clamp , Ratos , Ratos Wistar , Receptores de Glutamato Metabotrópico/efeitos dos fármacos , Simpatolíticos , Tetrodotoxina/farmacologia
6.
Epilepsia ; 50(4): 702-10, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19055493

RESUMO

PURPOSE: We analyzed the effects of seletracetam (ucb 44212; SEL), a new antiepileptic drug candidate, in an in vitro model of epileptic activity. The activity of SEL was compared to the effects of levetiracetam (LEV; Keppra), in the same assays. METHODS: Combined electrophysiologic and microfluorometric recordings were performed from layer V pyramidal neurons in rat cortical slices to study the effects of SEL on the paroxysmal depolarization shifts (PDSs), and the simultaneous elevations of intracellular Ca(2+) concentration [Ca(2+)](i). Moreover, the involvement of high-voltage activated Ca(2+) currents (HVACCs) was investigated by means of patch-clamp recordings from acutely dissociated pyramidal neurons. RESULTS: SEL significantly reduced both the duration of PDSs (IC(50) = 241.0 +/- 21.7 nm) as well as the number of action potentials per PDS (IC(50) = 82.7 +/- 9.7 nm). In addition, SEL largely decreased the [Ca(2+)](i) rise accompanying PDSs (up to 75% of control values, IC(50) = 345.0 +/- 15.0 nm). Furthermore, SEL significantly reduced HVACCs in pyramidal neurons. This effect was mimicked by omega-conotoxin GVIA and, to a lesser extent, by omega-conotoxin MVIIC, blockers of N- and Q-type HVACC, respectively. The combination of these two toxins occluded the action of SEL, suggesting that N-type Ca(2+) channels, and partly Q-type subtypes are preferentially targeted. CONCLUSIONS: These results demonstrate a powerful inhibitory effect of SEL on epileptiform events in vitro. SEL showed a higher potency than LEV. The effective limitation of [Ca(2+)](i) influx might be relevant for its antiepileptic efficacy and, more broadly, for pathologic processes involving neuronal [Ca(2+)](i) overload.


Assuntos
Anticonvulsivantes/farmacologia , Canais de Cálcio/fisiologia , Cálcio/metabolismo , Neocórtex/citologia , Inibição Neural/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Pirrolidinonas/farmacologia , 4-Aminopiridina/farmacologia , Animais , Bicuculina/farmacologia , Biofísica/métodos , Bloqueadores dos Canais de Cálcio/farmacologia , Relação Dose-Resposta a Droga , Antagonistas GABAérgicos/farmacologia , Técnicas In Vitro , Levetiracetam , Magnésio/metabolismo , Masculino , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Neurônios/metabolismo , Técnicas de Patch-Clamp/métodos , Piracetam/análogos & derivados , Piracetam/farmacologia , Bloqueadores dos Canais de Potássio/farmacologia , Ratos , Ratos Wistar
7.
Front Pharmacol ; 8: 812, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29170640

RESUMO

Metabotropic glutamate (mGlu) receptor 5 is involved in neuroinflammation and has been shown to mediate reduced inflammation and neurotoxicity and to modify microglia polarization. On the other hand, blockade of mGlu5 receptor results in inhibition of microglia activation. To dissect this controversy, we investigated whether microvesicles (MVs) released from microglia BV2 cells could contribute to the communication between microglia and neurons and whether this interaction was modulated by mGlu5 receptor. Activation of purinergic ionotropic P2X7 receptor with the stable ATP analog benzoyl-ATP (100 µM) caused rapid MVs shedding from BV2 cells. Ionic currents through P2X7 receptor increased in BV2 cells pretreated for 24 h with the mGlu5 receptor agonist CHPG (200 µM) as by patch-clamp recording. This increase was blunted when microglia cells were activated by exposure to lipopolysaccharide (LPS; 0.1 µg/ml for 6 h). Accordingly, a greater amount of MVs formed after CHPG treatment, an effect prevented by the mGlu5 receptor antagonist MTEP (100 µM), as measured by expression of flotillin, a membrane protein enriched in MVs. Transferred MVs were internalized by SH-SY5Y neurons where they did not modify neuronal death induced by a low concentration of rotenone (0.1 µM for 24 h), but significantly increased rotenone neurotoxicity when shed from CHPG-treated BV2 cells. miR146a was increased in CHPG-treated MVs, an effect concealed in MVs from LPS-activated BV2 cells that showed per se an increase in miRNA146a levels. The present data support a role for microglia-shed MVs in mGlu5-mediated modulation of neuronal death and identify miRNAs as potential critical mediators of this interaction.

8.
Eur J Neurosci ; 25(5): 1319-31, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17425558

RESUMO

Striatal parvalbumin-containing fast-spiking (FS) interneurons provide a powerful feedforward GABAergic inhibition on spiny projection neurons, through a widespread arborization and electrical coupling. Modulation of FS interneuron activity might therefore strongly affect striatal output. Metabotropic glutamate receptors (mGluRs) exert a modulatory action at various levels in the striatum. We performed electrophysiological recordings from a rat striatal slice preparation to investigate the effects of group I mGluR activation on both the intrinsic and synaptic properties of FS interneurons. Bath-application of the group I mGluR agonist, (S)-3,5-dihydroxyphenylglycine (3,5-DHPG), caused a dose-dependent depolarizing response. Both (S)-(+)-alpha-amino-4-carboxy-2-methylbenzeneacetic acid (LY367385) and 7-(hydroxyimino)cyclopropa[b]chromen-1a-carboxylate ethyl ester (CPCCOEt), selective mGluR1 antagonists, significantly reduced the amplitude of the membrane depolarization caused by 3,5-DHPG application. Conversely, mGluR5 antagonists, 2-methyl-6-(phenylethylnyl)pyridine hydrochloride (MPEP) and 6-methyl-2-(phenylazo)-3-pyridinol (SIB1757), were unable to affect the response to 3,5-DHPG, suggesting that only mGluR1 contributes to the 3,5-DHPG-mediated excitatory action on FS interneurons. Furthermore, mGluR1 blockade significantly decreased the amplitude of the glutamatergic postsynaptic potentials, whereas the mGluR5 antagonist application produced a small nonsignificant inhibitory effect. Surprisingly, our electron microscopic data demonstrate that the immunoreactivity for both mGluR1a and mGluR5 is expressed extrasynaptically on the plasma membrane of parvalbumin-immunoreactive dendrites of FS interneurons. Together, these results suggest that despite a common pattern of distribution, mGluR1 and mGluR5 exert distinct functions in the modulation of FS interneuron activity.


Assuntos
Potenciais de Ação/fisiologia , Corpo Estriado/citologia , Interneurônios/fisiologia , Receptores de Glutamato Metabotrópico/fisiologia , Animais , Bicuculina/farmacologia , Relação Dose-Resposta a Droga , Interações Medicamentosas , Agonistas de Aminoácidos Excitatórios/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Antagonistas GABAérgicos/farmacologia , Técnicas In Vitro , Interneurônios/metabolismo , Interneurônios/ultraestrutura , Masculino , Microscopia Imunoeletrônica/métodos , Parvalbuminas/metabolismo , Ratos , Ratos Wistar , Receptores de Glutamato Metabotrópico/agonistas , Receptores de Glutamato Metabotrópico/antagonistas & inibidores , Frações Subcelulares/metabolismo , Frações Subcelulares/ultraestrutura , Sinapses/metabolismo , Sinapses/ultraestrutura
9.
Neurobiol Dis ; 20(2): 461-70, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15893467

RESUMO

The ability of astrocytes to mediate 17beta-estradiol neuroprotection of spinal motoneurons challenged with AMPA has been evaluated in a co-culture system in which pure motoneurons were pulsed with 20 microM AMPA and then transferred onto an astrocyte layer pretreated for 24 h with 10 nM 17beta-estradiol. Under these conditions, AMPA toxicity was reverted, an effect that was likely related to increased production and release of GDNF, as shown by RT-PCR, Western blot analysis and ELISA assay. In addition, treatment with GDNF during the 24 h that followed the AMPA pulse produced a similar neuroprotective effect, whereas addition of a neutralizing anti-GDNF antibody prevented neuroprotection. These data suggest a role for astrocytes in the neuroprotective effect of 17beta-estradiol against spinal motoneuron death and find strong support in the marked up-regulation of estrogen receptor alpha found in spinal astrocytes of amyotrophic lateral sclerosis patients.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Células do Corno Anterior/metabolismo , Astrócitos/metabolismo , Estradiol/metabolismo , Degeneração Neural/metabolismo , Fármacos Neuroprotetores/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Esclerose Lateral Amiotrófica/fisiopatologia , Animais , Animais Recém-Nascidos , Células do Corno Anterior/efeitos dos fármacos , Células do Corno Anterior/patologia , Anticorpos/farmacologia , Astrócitos/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Morte Celular/fisiologia , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Células Cultivadas , Estradiol/farmacologia , Receptor alfa de Estrogênio/metabolismo , Fator Neurotrófico Derivado de Linhagem de Célula Glial/antagonistas & inibidores , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Humanos , Pessoa de Meia-Idade , Degeneração Neural/induzido quimicamente , Degeneração Neural/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Neurotoxinas/antagonistas & inibidores , Neurotoxinas/toxicidade , Ratos , Ratos Sprague-Dawley , Fatores Sexuais , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/antagonistas & inibidores , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/toxicidade
10.
Neuroendocrinology ; 77(5): 334-40, 2003 May.
Artigo em Inglês | MEDLINE | ID: mdl-12806179

RESUMO

Estrogens are recognized as neuroprotective and neurotrophic agents in the central nervous system. They are involved in neuronal differentiation and survival and promote neural development. Estrogen receptors alpha (ER-alpha) and beta (ER-beta) are predominantly expressed in neurons, whereas their presence in glial cells in vivo is more controversial. Changes in their expression during development have been described in different brain areas, but little is known about their presence in the spinal cord. We have carried out an immunohistochemical study in an attempt to analyze the expression of both ERs in astrocytes and oligodendrocytes of the rat spinal cord and their modifications during postnatal development. RT-PCR analysis of whole spinal cord extracts from 4-, 12-, and 25-day-old and adult rats indicated changes in the expression of both receptors during maturation. Immunohistochemistry of slices of the lumbar tract revealed that in an area of the ventral spinal cord that does not contain neuronal cell bodies, but mainly fibers and glial cells, both ER-alpha and ER-beta can be detected. Immunostaining is clearly nuclear, and, in the case of ER-alpha, both markedly positive and weakly labeled cells can be identified. ER-alpha is expressed during early development to progressively decline in the adult stage. In contrast, the ER-beta signal is low and peaks at postnatal day 25, whereas it is almost undetectable at other ages. Colocalization studies revealed that, at postnatal day 25, ER-alpha and ER-beta are expressed in astrocytes (identified by the specific marker glial fibrillar acidic protein) and oligodendrocytes (labeled by antimyelin 2',3'-cyclic nucleotide 3'-phosphodiesterase). The present results confirm the expression of ER-alpha and ER-beta in glial cells in vivo and suggest that, also in the spinal cord, glial cells may contribute to the effects of estrogen during development.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Neuroglia/metabolismo , Receptores de Estrogênio/genética , Medula Espinal/crescimento & desenvolvimento , Animais , Animais Recém-Nascidos , Astrócitos/metabolismo , Receptor alfa de Estrogênio , Receptor beta de Estrogênio , Imuno-Histoquímica , Masculino , Oligodendroglia/metabolismo , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Medula Espinal/citologia , Medula Espinal/metabolismo , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA