Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 20(7)2020 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-32235483

RESUMO

Hyperspectral imaging (HSI) technology has demonstrated potential to provide useful information about the chemical composition of tissue and its morphological features in a single image modality. Deep learning (DL) techniques have demonstrated the ability of automatic feature extraction from data for a successful classification. In this study, we exploit HSI and DL for the automatic differentiation of glioblastoma (GB) and non-tumor tissue on hematoxylin and eosin (H&E) stained histological slides of human brain tissue. GB detection is a challenging application, showing high heterogeneity in the cellular morphology across different patients. We employed an HSI microscope, with a spectral range from 400 to 1000 nm, to collect 517 HS cubes from 13 GB patients using 20× magnification. Using a convolutional neural network (CNN), we were able to automatically detect GB within the pathological slides, achieving average sensitivity and specificity values of 88% and 77%, respectively, representing an improvement of 7% and 8% respectively, as compared to the results obtained using RGB (red, green, and blue) images. This study demonstrates that the combination of hyperspectral microscopic imaging and deep learning is a promising tool for future computational pathologies.


Assuntos
Encéfalo/diagnóstico por imagem , Glioblastoma/diagnóstico , Imageamento Hiperespectral , Rede Nervosa , Algoritmos , Encéfalo/patologia , Aprendizado Profundo , Glioblastoma/patologia , Humanos , Processamento de Imagem Assistida por Computador , Redes Neurais de Computação
2.
Sensors (Basel) ; 19(24)2019 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-31842410

RESUMO

Hyperspectral imaging (HSI) is a non-ionizing and non-contact imaging technique capable of obtaining more information than conventional RGB (red green blue) imaging. In the medical field, HSI has commonly been investigated due to its great potential for diagnostic and surgical guidance purposes. However, the large amount of information provided by HSI normally contains redundant or non-relevant information, and it is extremely important to identify the most relevant wavelengths for a certain application in order to improve the accuracy of the predictions and reduce the execution time of the classification algorithm. Additionally, some wavelengths can contain noise and removing such bands can improve the classification stage. The work presented in this paper aims to identify such relevant spectral ranges in the visual-and-near-infrared (VNIR) region for an accurate detection of brain cancer using in vivo hyperspectral images. A methodology based on optimization algorithms has been proposed for this task, identifying the relevant wavelengths to achieve the best accuracy in the classification results obtained by a supervised classifier (support vector machines), and employing the lowest possible number of spectral bands. The results demonstrate that the proposed methodology based on the genetic algorithm optimization slightly improves the accuracy of the tumor identification in ~5%, using only 48 bands, with respect to the reference results obtained with 128 bands, offering the possibility of developing customized acquisition sensors that could provide real-time HS imaging. The most relevant spectral ranges found comprise between 440.5-465.96 nm, 498.71-509.62 nm, 556.91-575.1 nm, 593.29-615.12 nm, 636.94-666.05 nm, 698.79-731.53 nm and 884.32-902.51 nm.


Assuntos
Neoplasias Encefálicas/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Diagnóstico por Imagem/métodos , Processamento de Imagem Assistida por Computador , Encéfalo/patologia , Neoplasias Encefálicas/patologia , Humanos , Espectroscopia de Luz Próxima ao Infravermelho , Máquina de Vetores de Suporte
3.
Sci Data ; 11(1): 681, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38914542

RESUMO

Hyperspectral (HS) imaging (HSI) technology combines the main features of two existing technologies: imaging and spectroscopy. This allows to analyse simultaneously the morphological and chemical attributes of the objects captured by a HS camera. In recent years, the use of HSI provides valuable insights into the interaction between light and biological tissues, and makes it possible to detect patterns, cells, or biomarkers, thus, being able to identify diseases. This work presents the HistologyHSI-GB dataset, which contains 469 HS images from 13 patients diagnosed with brain tumours, specifically glioblastoma. The slides were stained with haematoxylin and eosin (H&E) and captured using a microscope at 20× power magnification. Skilled histopathologists diagnosed the slides and provided image-level annotations. The dataset was acquired using custom HSI instrumentation, consisting of a microscope equipped with an HS camera covering the spectral range from 400 to 1000 nm.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Imageamento Hiperespectral , Humanos , Glioblastoma/diagnóstico por imagem , Glioblastoma/patologia , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/diagnóstico por imagem , Microscopia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA