Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Faraday Discuss ; 244(0): 199-209, 2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37186104

RESUMO

Photoredox catalysis is a valuable tool in a large variety of chemical reactions. Main challenges still to be overcome are photodegradation of photocatalysts and substrates, short lifetimes of reactive intermediates, and selectivity issues due to unwanted side reactions. A potential solution to these challenges is the pre-organization of the photosensitizer, substrate and (co)-catalyst in supramolecular self-assembled structures. In such architectures, (organic) dyes can be stabilized, and higher selectivity could potentially be achieved through pre-organizing desired reaction partners via non-covalent interactions. Perylene diimide (PDI) is an organic dye, which can be readily reduced to its mono- and dianion. Excitation of both anions leads to highly reducing excited states, which are able to reduce a variety of substrates via single electron transfer. The incorporation of PDI into a heteroleptic [M4La2Lb2] supramolecular square has been recently demonstrated. Herein we investigate its photophysical properties and demonstrate that incorporated PDI indeed features photocatalytic activity. Initial results suggest that the pre-organisation by binding positively affects the outcome.

2.
J Am Chem Soc ; 142(19): 8837-8847, 2020 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-32302125

RESUMO

Catalysis in confined spaces, such as those provided by supramolecular cages, is quickly gaining momentum. It allows for second coordination sphere strategies to control the selectivity and activity of transition metal catalysts, beyond the classical methods like fine-tuning the steric and electronic properties of the coordinating ligands. Only a few electrocatalytic reactions within cages have been reported, and there is no information regarding the electron transfer kinetics and thermodynamics of redox-active species encapsulated into supramolecular assemblies. This contribution revolves around the preparation of M6L12 and larger M12L24 (M = Pd or Pt) nanospheres functionalized with different numbers of redox-active probes encapsulated within their cavity, either in a covalent fashion via different types of linkers (flexible, rigid and conjugated or rigid and nonconjugated) or by supramolecular hydrogen bonding interactions. The redox probes can be addressed by electrochemical electron transfer across the rim of nanospheres, and the thermodynamics and kinetics of this process are described. Our study identifies that the linker type and the number of redox probes within the cage are useful handles to fine-tune the electron transfer rates, paving the way for the encapsulation of electroactive catalysts and electrocatalytic applications of such supramolecular assemblies.

3.
Chemistry ; 26(58): 13241-13248, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32428350

RESUMO

Three Pt4 L2 L'2 heteroleptic rectangles (1-3), containing ditopic redox-active bis-pyridine functionalized perylene bisimide (PBI) ligands PBI-pyr2 (L) are reported. Co-ligand L' is a dicarboxylate spacer of varying length, leading to modified overall size of the assemblies. 1 H NMR spectroscopy reveals a trend in the splitting and upfield chemical shift of the PBI-hydrogens in the rectangles with respect to free PBI, most pronounced with the largest strut length (3) and least with the smallest strut length (1). This is attributed to increased rotational freedom of the PBI-pyr2 ligand over its longitudinal axis (Npy -Npy ), due to increased distance between the PBI-surfaces, which is corroborated by VT-NMR measurements and DFT calculations. The intramolecular motion entails desymmetrization of the two PBI-ligands, in line with cyclic voltammetry (CV) data. The first (overall two-electron) reduction event and re-oxidation for 1 display a subtle peak-to-peak splitting of 60 mV, whilst increased splitting of this event is observed for 2 and 3. The binding of pyrene in 1 is probed to establish proof of concept of host-guest chemistry enabled by the two PBI-motifs. Fitting the binding curve obtained by 1 H NMR titration with a 1:1 complex formation model led to a binding constant of 964±55 m-1 . Pyrene binding is shown to directly influence the redox-chemistry of 1, resulting in a cathodic and anodic shift of approximately 46 mV on the first and second reduction event, respectively.

4.
Chemistry ; 22(39): 13965-13975, 2016 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-27531163

RESUMO

The new dinucleating redox-active ligand (LH4 ), bearing two redox-active NNO-binding pockets linked by a 1,2,3-triazole unit, is synthetically readily accessible. Coordination to two equivalents of PdII resulted in the formation of paramagnetic (S=1/2 ) dinuclear Pd complexes with a κ2 -N,N'-bridging triazole and a single bridging chlorido or azido ligand. A combined spectroscopic, spectroelectrochemical, and computational study confirmed Robin-Day Class II mixed-valence within the redox-active ligand, with little influence of the secondary bridging anionic ligand. Intervalence charge transfer was observed between the two ligand binding pockets. Selective one-electron oxidation allowed for isolation of the corresponding cationic ligand-based diradical species. SQUID (super-conducting quantum interference device) measurements of these compounds revealed weak anti-ferromagnetic spin coupling between the two ligand-centered radicals and an overall singlet ground state in the solid state, which is supported by DFT calculations. The rigid and conjugated dinucleating redox-active ligand framework thus allows for efficient electronic communication between the two binding pockets.

5.
Chem Soc Rev ; 44(19): 6886-915, 2015 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-26148803

RESUMO

Redox-active ligands have evolved from being considered spectroscopic curiosities - creating ambiguity about formal oxidation states in metal complexes - to versatile and useful tools to expand on the reactivity of (transition) metals or to even go beyond what is generally perceived possible. This review focusses on metal complexes containing either catechol, o-aminophenol or o-phenylenediamine type ligands. These ligands have opened up a new area of chemistry for metals across the periodic table. The portfolio of ligand-based reactivity invoked by these redox-active entities will be discussed. This ranges from facilitating oxidative additions upon d(0) metals or cross coupling reactions with cobalt(iii) without metal oxidation state changes - by functioning as an electron reservoir - to intramolecular ligand-to-substrate single-electron transfer to create a reactive substrate-centered radical on a Pd(ii) platform. Although the current state-of-art research primarily consists of stoichiometric and exploratory reactions, several notable reports of catalysis facilitated by the redox-activity of the ligand will also be discussed. In conclusion, redox-active ligands containing catechol, o-aminophenol or o-phenylenediamine moieties show great potential to be exploited as reversible electron reservoirs, donating or accepting electrons to activate substrates and metal centers and to enable new reactivity with both early and late transition as well as main group metals.

6.
Chem Soc Rev ; 44(19): 7010, 2015 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-26186062

RESUMO

Correction for 'New avenues for ligand-mediated processes - expanding metal reactivity by the use of redox-active catechol, o-aminophenol and o-phenylenediamine ligands' by Daniël L. J. Broere et al., Chem. Soc. Rev., 2015, DOI: 10.1039/c5cs00161g.

7.
Chem Soc Rev ; 44(19): 7011, 2015 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-26255842

RESUMO

Correction for 'New avenues for ligand-mediated processes - expanding metal reactivity by the use of redox-active catechol, o-aminophenol and o-phenylenediamine ligands' by Daniël L. J. Broere et al., Chem. Soc. Rev., 2015, DOI: 10.1039/c5cs00161g.

8.
Chemistry ; 20(26): 7922-5, 2014 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-24867871

RESUMO

We present a new metal-organic framework (MOF) built from lanthanum and pyrazine-2,5-dicarboxylate (pyzdc) ions. This MOF, [La(pyzdc)1.5(H2O)2]⋅2 H2O, is microporous, with 1D channels that easily accommodate water molecules. Its framework is highly robust to dehydration/hydration cycles. Unusually for a MOF, it also features a high hydrothermal stability. This makes it an ideal candidate for air drying as well as for separating water/alcohol mixtures. The ability of the activated MOF to adsorb water selectively was evaluated by means of thermogravimetric analysis, powder and single-crystal X-ray diffraction and adsorption studies, indicating a maximum uptake of 1.2 mmol g(-1) MOF. These results are in agreement with the microporous structure, which permits only water molecules to enter the channels (alcohols, including methanol, are simply too large). Transient breakthrough simulations using water/methanol mixtures confirm that such mixtures can be separated cleanly using this new MOF.

9.
Chem Commun (Camb) ; 55(84): 12619-12622, 2019 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-31580367

RESUMO

M6L412+ supramolecular cages 3a and 3b (M = Pd, Pt), soluble in organic solvents, contain two different ligand-centered redox sites that enable the reversible storage of up to 16 electrons, as probed by CV, UV/vis spectro-electrochemistry (SEC-UV/Vis), bulk electrolysis and EPR. Encapsulation of a B12F122- anion is confirmed by 1H, 19F NMR and 19F DOSY NMR spectroscopy and mass spectrometry.

10.
Front Chem ; 6: 623, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30622940

RESUMO

This review focuses on the effects that confinement of molecular and heterogeneous catalysts with well-defined structure has on the selectivity and activity of these systems. A general introduction about catalysis and how the working principles of enzymes can be used as a source of inspiration for the preparation of catalysts with enhanced performance is provided. Subsequently, relevant studies demonstrate the importance of second coordination sphere effects in a broad sense (in homogeneous and heterogeneous catalysis). Firstly, we discuss examples involving zeolites, MOFs and COFs as heterogeneous catalysts with well-defined structures where confinement influences catalytic performance. Then, specific cases of homogeneous catalysts where non-covalent interactions determine the selectivity and activity are treated in detail. This includes examples based on cyclodextrins, calix[n]arenes, cucurbit[n]urils, and self-assembled container molecules. Throughout the review, the impact of confined spaces is emphasized and put into context, in order to get a better understanding of the effects of confinement on catalyst performance. In addition, this analysis intends to showcase the similarities between homogeneous and heterogeneous catalysts, which may aid the development of novel strategies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA