Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Angew Chem Int Ed Engl ; 62(34): e202218783, 2023 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-37162386

RESUMO

The ß-barrel assembly machinery (BAM complex) is essential for outer membrane protein (OMP) folding in Gram-negative bacteria, and represents a promising antimicrobial target. Several conformational states of BAM have been reported, but all have been obtained under conditions which lack the unique features and complexity of the outer membrane (OM). Here, we use Pulsed Electron-Electron Double Resonance (PELDOR, or DEER) spectroscopy distance measurements to interrogate the conformational ensemble of the BAM complex in E. coli cells. We show that BAM adopts a broad ensemble of conformations in the OM, while in the presence of the antibiotic darobactin B (DAR-B), BAM's conformational equilibrium shifts to a restricted ensemble consistent with the lateral closed state. Our in-cell PELDOR findings are supported by new cryoEM structures of BAM in the presence and absence of DAR-B. This work demonstrates the utility of PELDOR to map conformational changes in BAM within its native cellular environment.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas da Membrana Bacteriana Externa/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica , Dobramento de Proteína
2.
J Biol Chem ; 295(36): 12822-12839, 2020 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-32111735

RESUMO

A disintegrin and metalloprotease 10 (ADAM10) is a transmembrane protein essential for embryonic development, and its dysregulation underlies disorders such as cancer, Alzheimer's disease, and inflammation. ADAM10 is a "molecular scissor" that proteolytically cleaves the extracellular region from >100 substrates, including Notch, amyloid precursor protein, cadherins, growth factors, and chemokines. ADAM10 has been recently proposed to function as six distinct scissors with different substrates, depending on its association with one of six regulatory tetraspanins, termed TspanC8s. However, it remains unclear to what degree ADAM10 function critically depends on a TspanC8 partner, and a lack of monoclonal antibodies specific for most TspanC8s has hindered investigation of this question. To address this knowledge gap, here we designed an immunogen to generate the first monoclonal antibodies targeting Tspan15, a model TspanC8. The immunogen was created in an ADAM10-knockout mouse cell line stably overexpressing human Tspan15, because we hypothesized that expression in this cell line would expose epitopes that are normally blocked by ADAM10. Following immunization of mice, this immunogen strategy generated four Tspan15 antibodies. Using these antibodies, we show that endogenous Tspan15 and ADAM10 co-localize on the cell surface, that ADAM10 is the principal Tspan15-interacting protein, that endogenous Tspan15 expression requires ADAM10 in cell lines and primary cells, and that a synthetic ADAM10/Tspan15 fusion protein is a functional scissor. Furthermore, two of the four antibodies impaired ADAM10/Tspan15 activity. These findings suggest that Tspan15 directly interacts with ADAM10 in a functional scissor complex.


Assuntos
Proteína ADAM10/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Proteínas de Membrana/metabolismo , Complexos Multiproteicos/metabolismo , Tetraspaninas/metabolismo , Células A549 , Proteína ADAM10/genética , Secretases da Proteína Precursora do Amiloide/genética , Animais , Células HEK293 , Humanos , Células Jurkat , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Complexos Multiproteicos/genética , Tetraspaninas/genética
3.
Biophys J ; 119(2): 448-459, 2020 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-32621864

RESUMO

The mechanosensitive channel of large conductance (MscL) from Mycobacterium tuberculosis has been used as a structural model for rationalizing functional observations in multiple MscL orthologs. Although these orthologs adopt similar structural architectures, they reportedly present significant functional differences. Subtle structural discrepancies on mechanosensitive channel nanopockets are known to affect mechanical gating and may be linked to large variability in tension sensitivity among these membrane channels. Here, we modify the nanopocket regions of MscL from Escherichia coli and M. tuberculosis and employ PELDOR/DEER distance and 3pESEEM deuterium accessibility measurements to interrogate channel structure within lipids, in which both channels adopt a closed conformation. Significant in-lipid structural differences between the two constructs suggest a more compact E. coli MscL at the membrane inner-leaflet, as a consequence of a rotated TM2 helix. Observed differences within lipids could explain E. coli MscL's higher tension sensitivity and should be taken into account in extrapolated models used for MscL gating rationalization.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Espectroscopia de Ressonância de Spin Eletrônica , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Ativação do Canal Iônico , Canais Iônicos/metabolismo
4.
Biophys J ; 113(9): 1968-1978, 2017 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-29117521

RESUMO

Pulse electron paramagnetic resonance (EPR) is being applied to ever more complex biological systems comprising multiple subunits. Membrane channel proteins are of great interest as pulse EPR reports on functionally significant but distinct conformational states in a native environment without the need for crystallization. Pulse EPR, in the form of pulsed electron-electron double resonance (PELDOR), using site-directed spin labeling, is most commonly employed to accurately determine distances (in the nanometer range) between different regions of the structure. However, PELDOR data analysis is more challenging in systems containing more than two spins (e.g., homomultimers) due to distorting multispin effects. Without suppression of these effects, much of the information contained in PELDOR data cannot be reliably retrieved. Thus, it is of utmost importance for future PELDOR applications in structural biology to develop suitable approaches that can overcome the multispin problem. Here, two different approaches for suppressing multispin effects in PELDOR, sparse labeling of the protein (reducing the labeling efficiency f) and reducing the excitation probability of spins (λ), are compared on two distinct bacterial mechanosensitive channels. For both the pentameric channel of large conductance (MscL) and the heptameric channel of small conductance (MscS) of Escherichia coli, mutants containing a spin label in the cytosolic or the transmembrane region were tested. Data demonstrate that distance distributions can be significantly improved with either approach compared to the standard PELDOR measurement, and confirm that λ < 1/(n-1) is needed to sufficiently suppress multispin effects (with n being the number of spins in the system). A clear advantage of the sparse labeling approach is demonstrated for the cytosolic mutants due to a significantly smaller loss in sensitivity. For the transmembrane mutants, this advantage is less pronounced but still useful for MscS, but performance is inferior for MscL possibly due to structural perturbations by the bulkier diamagnetic spin label analog.


Assuntos
Espectroscopia de Ressonância de Spin Eletrônica , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Canais Iônicos/química , Canais Iônicos/metabolismo , Fenômenos Mecânicos , Marcadores de Spin , Fenômenos Biomecânicos , Membrana Celular/metabolismo , Citosol/metabolismo , Proteínas de Escherichia coli/genética , Canais Iônicos/genética , Modelos Moleculares , Mutação , Multimerização Proteica , Estrutura Quaternária de Proteína
5.
Biochemistry ; 56(32): 4219-4234, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28656748

RESUMO

Ligand binding is one of the most fundamental properties of proteins. Ligand functions fall into three basic types: substrates, regulatory molecules, and cofactors essential to protein stability, reactivity, or enzyme-substrate complex formation. The regulation of potassium ion movement in bacteria is predominantly under the control of regulatory ligands that gate the relevant channels and transporters, which possess subunits or domains that contain Rossmann folds (RFs). Here we demonstrate that adenosine monophosphate (AMP) is bound to both RFs of the dimeric bacterial Kef potassium efflux system (Kef), where it plays a structural role. We conclude that AMP binds with high affinity, ensuring that the site is fully occupied at all times in the cell. Loss of the ability to bind AMP, we demonstrate, causes protein, and likely dimer, instability and consequent loss of function. Kef system function is regulated via the reversible binding of comparatively low-affinity glutathione-based ligands at the interface between the dimer subunits. We propose this interfacial binding site is itself stabilized, at least in part, by AMP binding.


Assuntos
Monofosfato de Adenosina/química , Antiportadores de Potássio-Hidrogênio/química , Dobramento de Proteína , Multimerização Proteica , Shewanella/química , Monofosfato de Adenosina/genética , Monofosfato de Adenosina/metabolismo , Antiportadores de Potássio-Hidrogênio/genética , Antiportadores de Potássio-Hidrogênio/metabolismo , Ligação Proteica , Domínios Proteicos , Estabilidade Proteica , Estrutura Quaternária de Proteína , Shewanella/genética , Shewanella/metabolismo
6.
Chemistry ; 22(14): 4700-3, 2016 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-26865468

RESUMO

Pulse electron paramagnetic resonance (EPR) is gaining increasing importance in structural biology. The PELDOR (pulsed electron-electron double resonance) method allows extracting distance information on the nanometer scale. Here, we demonstrate the efficient extraction of distances from multimeric systems such as membrane-embedded ion channels where data analysis is commonly hindered by multi-spin effects.

7.
Proc Natl Acad Sci U S A ; 109(40): E2675-82, 2012 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-23012406

RESUMO

The heptameric mechanosensitive channel of small conductance (MscS) provides a critical function in Escherichia coli where it opens in response to increased bilayer tension. Three approaches have defined different closed and open structures of the channel, resulting in mutually incompatible models of gating. We have attached spin labels to cysteine mutants on key secondary structural elements specifically chosen to discriminate between the competing models. The resulting pulsed electron-electron double resonance (PELDOR) spectra matched predicted distance distributions for the open crystal structure of MscS. The fit for the predictions by structural models of MscS derived by other techniques was not convincing. The assignment of MscS as open in detergent by PELDOR was unexpected but is supported by two crystal structures of spin-labeled MscS. PELDOR is therefore shown to be a powerful experimental tool to interrogate the conformation of transmembrane regions of integral membrane proteins.


Assuntos
Proteínas de Escherichia coli/química , Canais Iônicos/química , Modelos Moleculares , Conformação Proteica , Análise Espectral/métodos , Western Blotting , Cromatografia em Gel , Cristalografia , Espectroscopia de Ressonância de Spin Eletrônica , Mutagênese , Técnicas de Patch-Clamp , Análise de Sequência de DNA , Marcadores de Spin
8.
Biophys J ; 106(4): 834-42, 2014 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-24559986

RESUMO

Mechanosensitive channel proteins are important safety valves against osmotic shock in bacteria, and are involved in sensing touch and sound waves in higher organisms. The mechanosensitive channel of small conductance (MscS) has been extensively studied. Pulsed electron-electron double resonance (PELDOR or DEER) of detergent-solubilized protein confirms that as seen in the crystal structure, the outer ring of transmembrane helices do not pack against the pore-forming helices, creating an apparent void. The relevance of this void to the functional form of MscS in the bilayer is the subject of debate. Here, we report PELDOR measurements of MscS reconstituted into two lipid bilayer systems: nanodiscs and bicelles. The distance measurements from multiple mutants derived from the PELDOR data are consistent with the detergent-solution arrangement of the protein. We conclude, therefore, that the relative positioning of the transmembrane helices is preserved in mimics of the cell bilayer, and that the apparent voids are not an artifact of detergent solution but a property of the protein that will have to be accounted for in any molecular mechanism of gating.


Assuntos
Proteínas de Escherichia coli/química , Canais Iônicos/química , Bicamadas Lipídicas/metabolismo , Sequência de Aminoácidos , Cristalografia , Espectroscopia de Ressonância de Spin Eletrônica , Escherichia coli/química , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Canais Iônicos/metabolismo , Bicamadas Lipídicas/química , Dados de Sequência Molecular , Estrutura Terciária de Proteína
9.
Biochemistry ; 53(12): 1982-92, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24601535

RESUMO

The potassium efflux system, Kef, protects bacteria against the detrimental effects of electrophilic compounds via acidification of the cytoplasm. Kef is inhibited by glutathione (GSH) but activated by glutathione-S-conjugates (GS-X) formed in the presence of electrophiles. GSH and GS-X bind to overlapping sites on Kef, which are located in a cytosolic regulatory domain. The central paradox of this activation mechanism is that GSH is abundant in cells (at concentrations of ∼10-20 mM), and thus, activating ligands must possess a high differential over GSH in their affinity for Kef. To investigate the structural requirements for binding of a ligand to Kef, a novel fluorescent reporter ligand, S-{[5-(dimethylamino)naphthalen-1-yl]sulfonylaminopropyl} glutathione (DNGSH), was synthesized. By competition assays using DNGSH, complemented by direct binding assays and thermal shift measurements, we show that the well-characterized Kef activator, N-ethylsuccinimido-S-glutathione, has a 10-20-fold higher affinity for Kef than GSH. In contrast, another native ligand that is a poor activator, S-lactoylglutathione, exhibits a similar Kef affinity to GSH. Synthetic ligands were synthesized to contain either rigid or flexible structures and investigated as ligands for Kef. Compounds with rigid structures and high affinity activated Kef. In contrast, flexible ligands with similar binding affinities did not activate Kef. These data provide insight into the structural requirements for Kef gating, paving the way for the development of a screen for potential therapeutic lead compounds targeting the Kef system.


Assuntos
Proteínas de Escherichia coli/química , Glutationa/análogos & derivados , Antiportadores de Potássio-Hidrogênio/química , Potássio/química , Succinimidas/química , Transporte Biológico Ativo/fisiologia , Proteínas de Escherichia coli/metabolismo , Glutationa/química , Glutationa/metabolismo , Ativação do Canal Iônico/fisiologia , Ligantes , Potássio/metabolismo , Antiportadores de Potássio-Hidrogênio/metabolismo , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Shewanella/química , Shewanella/metabolismo , Succinimidas/metabolismo
10.
Structure ; 32(6): 739-750.e4, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38521071

RESUMO

Membrane forces shift the equilibria of mechanosensitive channels enabling them to convert mechanical cues into electrical signals. Molecular tools to stabilize and methods to capture their highly dynamic states are lacking. Cyclodextrins can mimic tension through the sequestering of lipids from membranes. Here we probe the conformational ensemble of MscS by EPR spectroscopy, the lipid environment with NMR, and function with electrophysiology under cyclodextrin-induced tension. We show the extent of MscS activation depends on the cyclodextrin-to-lipid ratio, and that lipids are depleted slower when MscS is present. This has implications in MscS' activation kinetics when distinct membrane scaffolds such as nanodiscs or liposomes are used. We find MscS transits from closed to sub-conducting state(s) before it desensitizes, due to the lack of lipid availability in its vicinity required for closure. Our approach allows for monitoring tension-sensitive states in membrane proteins and screening molecules capable of inducing molecular tension in bilayers.


Assuntos
Ciclodextrinas , Canais Iônicos , Bicamadas Lipídicas , Canais Iônicos/metabolismo , Canais Iônicos/química , Ciclodextrinas/química , Ciclodextrinas/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica , Bicamadas Lipídicas/metabolismo , Bicamadas Lipídicas/química , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Conformação Proteica , Escherichia coli/metabolismo , Escherichia coli/genética , Ativação do Canal Iônico , Mecanotransdução Celular , Lipossomos/metabolismo , Lipossomos/química , Modelos Moleculares
11.
Proc Natl Acad Sci U S A ; 107(46): 19784-9, 2010 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-21041667

RESUMO

Gram negative pathogens are protected against toxic electrophilic compounds by glutathione-gated potassium efflux systems (Kef) that modulate cytoplasmic pH. We have elucidated the mechanism of gating through structural and functional analysis of Escherichia coli KefC. The revealed mechanism can explain how subtle chemical differences in glutathione derivatives can produce opposite effects on channel function. Kef channels are regulated by potassium transport and NAD-binding (KTN) domains that sense both reduced glutathione, which inhibits Kef activity, and glutathione adducts that form during electrophile detoxification and activate Kef. We find that reduced glutathione stabilizes an interdomain association between two KTN folds, whereas large adducts sterically disrupt this interaction. F441 is identified as the pivotal residue discriminating between reduced glutathione and its conjugates. We demonstrate a major structural change on the binding of an activating ligand to a KTN-domain protein. Analysis of the regulatory interactions suggests strategies to disrupt pathogen potassium and pH homeostasis.


Assuntos
Escherichia coli/metabolismo , Ativação do Canal Iônico/fisiologia , Potássio/metabolismo , Sequência de Aminoácidos , Transporte Biológico/efeitos dos fármacos , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Glutationa/análogos & derivados , Glutationa/metabolismo , Glutationa/farmacologia , Ativação do Canal Iônico/efeitos dos fármacos , Ligantes , Modelos Moleculares , Dados de Sequência Molecular , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Canais de Potássio/química , Canais de Potássio/metabolismo , Ligação Proteica/efeitos dos fármacos , Multimerização Proteica/efeitos dos fármacos , Estrutura Terciária de Proteína , Succinimidas/farmacologia
12.
Front Chem ; 11: 1162412, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37021145

RESUMO

MscL was the first mechanosensitive ion channel identified in bacteria. The channel opens its large pore when the turgor pressure of the cytoplasm increases close to the lytic limit of the cellular membrane. Despite their ubiquity across organisms, their importance in biological processes, and the likelihood that they are one of the oldest mechanisms of sensory activation in cells, the exact molecular mechanism by which these channels sense changes in lateral tension is not fully understood. Modulation of the channel has been key to understanding important aspects of the structure and function of MscL, but a lack of molecular triggers of these channels hindered early developments in the field. Initial attempts to activate mechanosensitive channels and stabilize functionally relevant expanded or open states relied on mutations and associated post-translational modifications that were often cysteine reactive. These sulfhydryl reagents positioned at key residues have allowed the engineering of MscL channels for biotechnological purposes. Other studies have modulated MscL by altering membrane properties, such as lipid composition and physical properties. More recently, a variety of structurally distinct agonists have been shown bind to MscL directly, close to a transmembrane pocket that has been shown to have an important role in channel mechanical gating. These agonists have the potential to be developed further into antimicrobial therapies that target MscL, by considering the structural landscape and properties of these pockets.

13.
Angew Chem Weinheim Bergstr Ger ; 135(34): e202218783, 2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-38515502

RESUMO

The ß-barrel assembly machinery (BAM complex) is essential for outer membrane protein (OMP) folding in Gram-negative bacteria, and represents a promising antimicrobial target. Several conformational states of BAM have been reported, but all have been obtained under conditions which lack the unique features and complexity of the outer membrane (OM). Here, we use Pulsed Electron-Electron Double Resonance (PELDOR, or DEER) spectroscopy distance measurements to interrogate the conformational ensemble of the BAM complex in E. coli cells. We show that BAM adopts a broad ensemble of conformations in the OM, while in the presence of the antibiotic darobactin B (DAR-B), BAM's conformational equilibrium shifts to a restricted ensemble consistent with the lateral closed state. Our in-cell PELDOR findings are supported by new cryoEM structures of BAM in the presence and absence of DAR-B. This work demonstrates the utility of PELDOR to map conformational changes in BAM within its native cellular environment.

14.
Channels (Austin) ; 16(1): 148-158, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35941834

RESUMO

Mechanosensitive ion channels are integral membrane proteins ubiquitously present in bacteria, archaea, and eukarya. They act as molecular sensors of mechanical stress to serve vital functions such as touch, hearing, osmotic pressure, proprioception and balance, while their malfunction is often associated with pathologies. Amongst them, the structurally distinct MscL and MscS channels from bacteria are the most extensively studied. MscS-like channels have been found in plants and Schizosaccharomyces pombe, where they regulate intracellular Ca2+ and cell volume under hypo-osmotic conditions. Here we characterize two MscS-like putative channels, named MscA and MscB, from the model filamentous fungus Aspergillus nidulans. Orthologues of MscA and MscB are present in most fungi, including relative plant and animal pathogens. MscA/MscB and other fungal MscS-like proteins share the three transmembrane helices and the extended C-terminal cytosolic domain that form the structural fingerprint of MscS-like channels with at least three additional transmembrane segments than Escherichia coli MscS. We show that MscA and MscB localize in Endoplasmic Reticulum and the Plasma Membrane, respectively, whereas their overexpression leads to increased CaCl2 toxicity or/and reduction of asexual spore formation. Our findings contribute to understanding the role of MscS-like channels in filamentous fungi and relative pathogens.


Assuntos
Aspergillus nidulans , Proteínas de Escherichia coli , Aspergillus nidulans/genética , Aspergillus nidulans/metabolismo , Bactérias/metabolismo , Escherichia coli , Proteínas de Escherichia coli/metabolismo , Canais Iônicos/metabolismo , Mecanotransdução Celular , Pressão Osmótica/fisiologia
15.
STAR Protoc ; 3(3): 101562, 2022 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-35874470

RESUMO

Solvent accessibilities of and distances between protein residues measured by pulsed-EPR approaches provide high-resolution information on dynamic protein motions. We describe protocols for the purification and site-directed spin labeling of integral membrane proteins. In our protocol, peptide-level HDX-MS is used as a precursor to guide single-residue resolution ESEEM accessibility measurements and spin labeling strategies for EPR applications. Exploiting the pentameric MscL channel as a model, we discuss the use of cwEPR, DEER/PELDOR, and ESEEM spectroscopies to interrogate membrane protein dynamics. For complete details on the use and execution of this protocol, please refer to Wang et al. (2022).


Assuntos
Proteínas de Membrana , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Proteínas de Membrana/química , Marcadores de Spin
16.
Front Mol Biosci ; 9: 970391, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36425655

RESUMO

Human equilibrative nucleoside transporters represent a major pharmaceutical target for cardiac, cancer and viral therapies. Understanding the molecular basis for transport is crucial for the development of improved therapeutics through structure-based drug design. ENTs have been proposed to utilise an alternating access mechanism of action, similar to that of the major facilitator superfamily. However, ENTs lack functionally-essential features of that superfamily, suggesting that they may use a different transport mechanism. Understanding the molecular basis of their transport requires insight into diverse conformational states. Differences between intermediate states may be discrete and mediated by subtle gating interactions, such as salt bridges. We identified four variants of human equilibrative nucleoside transporter isoform 1 (hENT1) at the large intracellular loop (ICL6) and transmembrane helix 7 (TM7) that stabilise the apo-state (∆T m 0.7-1.5°C). Furthermore, we showed that variants K263A (ICL6) and I282V (TM7) specifically stabilise the inhibitor-bound state of hENT1 (∆∆T m 5.0 ± 1.7°C and 3.0 ± 1.8°C), supporting the role of ICL6 in hENT1 gating. Finally, we showed that, in comparison with wild type, variant T336A is destabilised by nitrobenzylthioinosine (∆∆T m -4.7 ± 1.1°C) and binds it seven times worse. This residue may help determine inhibitor and substrate sensitivity. Residue K263 is not present in the solved structures, highlighting the need for further structural data that include the loop regions.

17.
Structure ; 30(4): 608-622.e5, 2022 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-34986323

RESUMO

The mechanosensitive ion channel of large conductance MscL gates in response to membrane tension changes. Lipid removal from transmembrane pockets leads to a concerted structural and functional MscL response, but it remains unknown whether there is a correlation between the tension-mediated state and the state derived by pocket delipidation in the absence of tension. Here, we combined pulsed electron paramagnetic resonance spectroscopy and hydrogen-deuterium exchange mass spectrometry, coupled with molecular dynamics simulations under membrane tension, to investigate the structural changes associated with the distinctively derived states. Whether it is tension- or modification-mediated pocket delipidation, we find that MscL samples a similar expanded subconducting state. This is the final step of the delipidation pathway, but only an intermediate stop on the tension-mediated path, with additional tension triggering further channel opening. Our findings hint at synergistic modes of regulation by lipid molecules in membrane tension-activated mechanosensitive channels.


Assuntos
Proteínas de Escherichia coli , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Canais Iônicos/química , Bicamadas Lipídicas/metabolismo , Simulação de Dinâmica Molecular
18.
ACS Synth Biol ; 8(7): 1631-1641, 2019 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-31243979

RESUMO

Membrane proteins (MPs) execute a wide variety of critical biological functions in all living organisms and constitute approximately half of current targets for drug discovery. As in the case of soluble proteins, the bacterium Escherichia coli has served as a very popular overexpression host for biochemical/structural studies of membrane proteins as well. Bacterial recombinant membrane protein production, however, is typically hampered by poor cellular accumulation and severe toxicity for the host, which leads to low levels of final biomass and minute volumetric yields. In previous work, we generated the engineered E. coli strains SuptoxD and SuptoxR, which upon coexpression of the effector genes djlA or rraA, respectively, can suppress the cytotoxicity caused by MP overexpression and produce enhanced MP yields. Here, we systematically looked for gene overexpression and culturing conditions that maximize the accumulation of membrane-integrated and well-folded recombinant MPs in these strains. We have found that, under optimal conditions, SuptoxD and SuptoxR achieve greatly enhanced recombinant production for a variety of MP, irrespective of their archaeal, eubacterial, or eukaryotic origin. Furthermore, we demonstrate that the use of these engineered strains enables the production of well-folded recombinant MPs of high quality and at high yields, which are suitable for functional and structural studies. We anticipate that SuptoxD and SuptoxR will become broadly utilized expression hosts for recombinant MP production in bacteria.


Assuntos
Proteínas de Escherichia coli/genética , Escherichia coli/genética , Proteínas de Membrana/genética , Proteínas Recombinantes/genética , Biomassa , Expressão Gênica/genética
19.
Nat Commun ; 10(1): 4619, 2019 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-31601809

RESUMO

Lipid availability within transmembrane nano-pockets of ion channels is linked with mechanosensation. However, the effect of hindering lipid-chain penetration into nano-pockets on channel structure has not been demonstrated. Here we identify nano-pockets on the large conductance mechanosensitive channel MscL, the high-pressure threshold channel. We restrict lipid-chain access to the nano-pockets by mutagenesis and sulfhydryl modification, and monitor channel conformation by PELDOR/DEER spectroscopy. For a single site located at the entrance of the nano-pockets and distal to the channel pore we generate an allosteric response in the absence of tension. Single-channel recordings reveal a significant decrease in the pressure activation threshold of the modified channel and a sub-conducting state in the absence of applied tension. Threshold is restored to wild-type levels upon reduction of the sulfhydryl modification. The modification associated with the conformational change restricts lipid access to the nano-pocket, interrupting the contact between the membrane and the channel that mediates mechanosensitivity.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Canais Iônicos/química , Canais Iônicos/metabolismo , Regulação Alostérica , Proteínas de Bactérias/genética , Cisteína/genética , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Canais Iônicos/genética , Bicamadas Lipídicas/química , Lipídeos/química , Mutação , Conformação Proteica , Domínios Proteicos
20.
Methods Enzymol ; 594: 203-242, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28779841

RESUMO

Mechanosensitive (MS) ion channels are multimeric integral membrane proteins that respond to increased lipid bilayer tension by opening their nonselective pores to release solutes and relieve increased cytoplasmic pressure. These systems undergo major conformational changes during gating and the elucidation of their mechanism requires a deep understanding of the interplay between lipids and proteins. Lipids are responsible for transmitting lateral tension to MS channels and therefore play a key role in obtaining a molecular-detail model for mechanosensation. Site-directed spin labeling combined with electron paramagnetic resonance (EPR) spectroscopy is a powerful spectroscopic tool in the study of proteins. The main bottleneck for its use relates to challenges associated with successful isolation of the protein of interest, introduction of paramagnetic labels on desired sites, and access to specialized instrumentation and expertise. The design of sophisticated experiments, which combine a variety of existing EPR methodologies to address a diversity of specific questions, require knowledge of the limitations and strengths, characteristic of each particular EPR method. This chapter is using the MS ion channels as paradigms and focuses on the application of different EPR techniques to ion channels, in order to investigate oligomerization, conformation, and the effect of lipids on their regulation. The methodology we followed, from the initial strategic selection of mutants and sample preparation, including protein purification, spin labeling, reconstitution into lipid mimics to the complete set-up of the pulsed-EPR experiments, is described in detail.


Assuntos
Espectroscopia de Ressonância de Spin Eletrônica/métodos , Canais Iônicos/química , Canais Iônicos/metabolismo , Marcadores de Spin , Cisteína/química , Canais Iônicos/genética , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Modelos Moleculares , Mutagênese Sítio-Dirigida/métodos , Mutação , Conformação Proteica , Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA