Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Langmuir ; 37(39): 11429-11446, 2021 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-34559540

RESUMO

The creeping-flow theory describing evolution and steady-state shape of two-dimensional ionic-conductor drops under the action of surface tension and the subcritical (in terms of the electric Bond number) electric field imposed in the substrate plane is developed. On the other hand, the experimental data are acquired for drops impacted or softly deposited on dielectric surfaces of different wettability and subjected to an in-plane subcritical electric field. Even though the experimental situation involves viscous friction of drops with the substrates and wettability-driven motion of the contact line, the comparison to the theory reveals that it can accurately describe the steady-state drop shape on a non-wettable substrate. In the latter case, the drop is sufficiently raised above the substrate, which diminishes the three-dimensional effects, making the two-dimensional description (lacking the no-slip condition at the substrate and wettability-driven motion of the contact line) relevant. Accordingly, it is demonstrated how the subcritical electric field deforms the initially circular drops until an elongated steady-state configuration is reached. In particular, the surface tension tends to round off the non-circular drops stretched by the electric Maxwell stresses imposed by the electrodes. A more pronounced substrate wettability leads to more elongated steady-state configurations observed experimentally than those predicted by the two-dimensional theory. The latter cases reveal significant three-dimensional effects in the electrically driven drop stretching. In the supercritical electric fields (corresponding to the supercritical electric Bond numbers), the electrical stretching of drops predicted by the present linearized two-dimensional theory results in splitting into two separate droplets. This scenario is corroborated by the predictions of the fully nonlinear results for similar electrically stretched bubbles in the creeping-flow regime available in the literature as well as by the present experimental results on a substrate with slip.

2.
Phys Fluids (1994) ; 32(8): 083111, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32904886

RESUMO

The aerosol transmissibility of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has impacted the delivery of health care and essentially stopped the provision of medical and dental therapies. Dentistry uses rotary, ultrasonic, and laser-based instruments that produce water-based aerosols in the daily, routine treatment of patients. Abundant aerosols are generated, which reach health care workers and other patients. Viruses, including SARS-CoV-2 virus and related coronavirus disease (COVID-19) pandemic, continued expansion throughout the USA and the world. The virus is spread by both droplet (visible drops) and aerosol (practically invisible drops) transmission. The generation of aerosols in dentistry-an unavoidable part of most dental treatments-creates a high-risk situation. The US Centers for Disease Control and The Occupational Safety and Health Administration consider dental procedures to be of "highest risk" in the potential spreading of SARS-CoV-2 and other respiratory viruses. There are several ways to reduce or eliminate the virus: (i) cease or postpone dentistry (public and personal health risk), (ii) screen patients immediately prior to dental treatment (by appropriate testing, if any), (iii) block/remove the virus containing aerosol by engineering controls together with stringent personal protective equipment use. The present work takes a novel, fourth approach. By altering the physical response of water to the rotary or ultrasonic forces that are used in dentistry, the generation of aerosol particles and the distance any aerosol may spread beyond the point of generation can be markedly suppressed or completely eliminated in comparison to water for both the ultrasonic scaler and dental handpiece.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA