Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Nat Chem Biol ; 18(5): 501-510, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35289327

RESUMO

Native porphyran is a hybrid of porphryan and agarose. As a common element of edible seaweed, this algal galactan is a frequent component of the human diet. Bacterial members of the human gut microbiota have acquired polysaccharide utilization loci (PULs) that enable the metabolism of porphyran or agarose. However, the molecular mechanisms that underlie the deconstruction and use of native porphyran remains incompletely defined. Here, we have studied two human gut bacteria, porphyranolytic Bacteroides plebeius and agarolytic Bacteroides uniformis, that target native porphyran. This reveals an exo-based cycle of porphyran depolymerization that incorporates a keystone sulfatase. In both PULs this cycle also works together with a PUL-encoded agarose depolymerizing machinery to synergistically reduce native porphyran to monosaccharides. This provides a framework for understanding the deconstruction of a hybrid algal galactan, and insight into the competitive and/or syntrophic relationship of gut microbiota members that target rare nutrients.


Assuntos
Microbioma Gastrointestinal , Bactérias/metabolismo , Galactanos , Humanos , Polissacarídeos/metabolismo , Sefarose
2.
Proc Natl Acad Sci U S A ; 118(10)2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33658366

RESUMO

A challenge faced by peptidases is the recognition of highly diverse substrates. A feature of some peptidase families is the capacity to specifically use post-translationally added glycans present on their protein substrates as a recognition determinant. This is ultimately critical to enabling peptide bond hydrolysis. This class of enzyme is also frequently large and architecturally sophisticated. However, the molecular details underpinning glycan recognition by these O-glycopeptidases, the importance of these interactions, and the functional roles of their ancillary domains remain unclear. Here, using the Clostridium perfringens ZmpA, ZmpB, and ZmpC M60 peptidases as model proteins, we provide structural and functional insight into how these intricate proteins recognize glycans as part of catalytic and noncatalytic substrate recognition. Structural, kinetic, and mutagenic analyses support the key role of glycan recognition within the M60 domain catalytic site, though they point to ZmpA as an apparently inactive enzyme. Wider examination of the Zmp domain content reveals noncatalytic carbohydrate binding as a feature of these proteins. The complete three-dimensional structure of ZmpB provides rare insight into the overall molecular organization of a highly multimodular enzyme and reveals how the interplay of individual domain function may influence biological activity. O-glycopeptidases frequently occur in host-adapted microbes that inhabit or attack mucus layers. Therefore, we anticipate that these results will be fundamental to informing more detailed models of how the glycoproteins that are abundant in mucus are destroyed as part of pathogenic processes or liberated as energy sources during normal commensal lifestyles.


Assuntos
Proteínas de Bactérias/química , Clostridium perfringens/enzimologia , Metaloendopeptidases/química , Mucinas/química , Peptídeo-N4-(N-acetil-beta-glucosaminil) Asparagina Amidase/química , Proteínas de Bactérias/genética , Domínio Catalítico , Clostridium perfringens/genética , Hidrólise , Metaloendopeptidases/genética , Peptídeo-N4-(N-acetil-beta-glucosaminil) Asparagina Amidase/genética
3.
J Biol Chem ; 298(10): 102439, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36049519

RESUMO

Akkermansia muciniphila is key member of the human gut microbiota that impacts many features of host health. A major characteristic of this bacterium is its interaction with host mucin, which is abundant in the gut environment, and its ability to metabolize mucin as a nutrient source. The machinery deployed by A. muciniphila to enable this interaction appears to be extensive and sophisticated, yet it is incompletely defined. The uncharacterized protein AMUC_1438 is encoded by a gene that was previously shown to be upregulated when the bacterium is grown on mucin. This uncharacterized protein has features suggestive of carbohydrate-recognition and peptidase activity, which led us to hypothesize that it has a role in mucin depolymerization. Here, we provide structural and functional support for the assignment of AMUC_1438 as a unique O-glycopeptidase with mucin-degrading capacity. O-glycopeptidase enzymes recognize glycans but hydrolyze the peptide backbone and are common in host-adapted microbes that colonize or invade mucus layers. Structural, kinetic, and mutagenic analyses point to a metzincin metalloprotease catalytic motif but with an active site that specifically recognizes a GalNAc residue α-linked to serine or threonine (i.e., the Tn-antigen). The enzyme catalyzes hydrolysis of the bond immediately N-terminal to the glycosylated residue. Additional modeling analyses suggest the presence of a carbohydrate-binding module that may assist in substrate recognition. We anticipate that these results will be fundamental to a wider understanding of the O-glycopeptidase class of enzymes and how they may contribute to host adaptation.


Assuntos
Akkermansia , Proteínas de Bactérias , Mucinas , Humanos , Mucinas/química , Peptídeo-N4-(N-acetil-beta-glucosaminil) Asparagina Amidase/química , Polissacarídeos/metabolismo , Akkermansia/enzimologia , Proteínas de Bactérias/química , Polimerização
4.
J Biol Chem ; 294(46): 17197-17208, 2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31591266

RESUMO

Streptococcus pneumoniae is an opportunistic respiratory pathogen that can spread to other body sites, including the ears, brain, and blood. The ability of this bacterium to break down, import, and metabolize a wide range of glycans is key to its virulence. Intriguingly, S. pneumoniae can utilize several plant oligosaccharides for growth in vitro, including raffinose-family oligosaccharides (RFOs, which are α-(1→6)-galactosyl extensions of sucrose). An RFO utilization locus has been identified in the pneumococcal genome; however, none of the proteins encoded by this locus have been biochemically characterized. The enigmatic ability of S. pneumoniae to utilize RFOs has recently received attention because mutations in two of the RFO locus genes have been linked to the tissue tropism of clinical pneumococcal isolates. Here, we use functional studies combined with X-ray crystallography to show that although the pneumococcal RFO locus encodes for all the machinery required for uptake and degradation of RFOs, the individual pathway components are biochemically inefficient. We also demonstrate that the initiating enzyme in this pathway, the α-galactosidase Aga (a family 36 glycoside hydrolase), can cleave α-(1→3)-linked galactose units from a linear blood group antigen. We propose that the pneumococcal RFO pathway is an evolutionary relic that is not utilized in this streptococcal species and, as such, is under no selection pressure to maintain binding affinity and/or catalytic efficiency. We speculate that the apparent contribution of RFO utilization to pneumococcal tissue tropism may, in fact, be due to the essential role the ATPase RafK plays in the transport of other carbohydrates.


Assuntos
Rafinose/metabolismo , Streptococcus pneumoniae/fisiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Loci Gênicos , Interações Hospedeiro-Patógeno , Humanos , Modelos Moleculares , Infecções Pneumocócicas/metabolismo , Infecções Pneumocócicas/microbiologia , Rafinose/genética , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/patogenicidade , alfa-Galactosidase/genética , alfa-Galactosidase/metabolismo
5.
J Biol Chem ; 294(34): 12670-12682, 2019 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-31266803

RESUMO

An important aspect of the interaction between the opportunistic bacterial pathogen Streptococcus pneumoniae and its human host is its ability to harvest host glycans. The pneumococcus can degrade a variety of complex glycans, including N- and O-linked glycans, glycosaminoglycans, and carbohydrate antigens, an ability that is tightly linked to the virulence of S. pneumoniae Although S. pneumoniae is known to use a sophisticated enzyme machinery to attack the human glycome, how it copes with fucosylated glycans, which are primarily histo-blood group antigens, is largely unknown. Here, we identified two pneumococcal enzymes, SpGH29C and SpGH95C, that target α-(1→3/4) and α-(1→2) fucosidic linkages, respectively. X-ray crystallography studies combined with functional assays revealed that SpGH29C is specific for the LewisA and LewisX antigen motifs and that SpGH95C is specific for the H(O)-antigen motif. Together, these enzymes could defucosylate LewisY and LewisB antigens in a complementary fashion. In vitro reconstruction of glycan degradation cascades disclosed that the individual or combined activities of these enzymes expose the underlying glycan structure, promoting the complete deconstruction of a glycan that would otherwise be resistant to pneumococcal enzymes. These experiments expand our understanding of the extensive capacity of S. pneumoniae to process host glycans and the likely roles of α-fucosidases in this. Overall, given the importance of enzymes that initiate glycan breakdown in pneumococcal virulence, such as the neuraminidase NanA and the mannosidase SpGH92, we anticipate that the α-fucosidases identified here will be important factors in developing more refined models of the S. pneumoniae-host interaction.


Assuntos
Antígenos/metabolismo , Polissacarídeos/metabolismo , Streptococcus pneumoniae/enzimologia , alfa-L-Fucosidase/metabolismo , Metabolismo dos Carboidratos , Interações Hospedeiro-Patógeno
6.
Proc Natl Acad Sci U S A ; 114(5): E679-E688, 2017 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-28096352

RESUMO

The vast majority of proteins are posttranslationally altered, with the addition of covalently linked sugars (glycosylation) being one of the most abundant modifications. However, despite the hydrolysis of protein peptide bonds by peptidases being a process essential to all life on Earth, the fundamental details of how peptidases accommodate posttranslational modifications, including glycosylation, has not been addressed. Through biochemical analyses and X-ray crystallographic structures we show that to hydrolyze their substrates, three structurally related metallopeptidases require the specific recognition of O-linked glycan modifications via carbohydrate-specific subsites immediately adjacent to their peptidase catalytic machinery. The three peptidases showed selectivity for different glycans, revealing protein-specific adaptations to particular glycan modifications, yet always cleaved the peptide bond immediately preceding the glycosylated residue. This insight builds upon the paradigm of how peptidases recognize substrates and provides a molecular understanding of glycoprotein degradation.


Assuntos
Peptídeo Hidrolases/metabolismo , Polissacarídeos/metabolismo , Escherichia coli/genética , Fetuínas/metabolismo , Glicopeptídeos/metabolismo , Glicosilação , Mucinas/metabolismo , Peptídeo Hidrolases/química , Peptídeo Hidrolases/genética , Conformação Proteica , Processamento de Proteína Pós-Traducional
7.
Glycobiology ; 30(1): 49-57, 2019 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-31701135

RESUMO

The opportunistic pathogen Clostridium perfringens possesses the ability to colonize the protective mucin layer in the gastrointestinal tract. To assist this, the C. perfringens genome contains a battery of genes encoding glycoside hydrolases (GHs) that are likely active on mucin glycans, including four genes encoding family 84 GHs: CpGH84A (NagH), CpGH84B (NagI), CpGH84C (NagJ) and CpGH84D (NagK). To probe the potential advantage gained by the expansion of GH84 enzymes in C. perfringens, we undertook the structural and functional characterization of the CpGH84 catalytic modules. Here, we show that these four CpGH84 catalytic modules act as ß-N-acetyl-D-glucosaminidases able to hydrolyze N- and O-glycan motifs. CpGH84A and CpGH84D displayed a substrate specificity restricted to terminal ß-1,2- and ß-1,6-linked N-acetyl-D-glucosamine (GlcNAc). CpGH84B and CpGH84C appear more promiscuous with activity on terminal ß-1,2-, ß-1,3- and ß-1,6-linked GlcNAc; both possess some activity toward ß-1,4-linked GlcNAc, but this is dependent upon which monosaccharide it is linked to. Furthermore, all the CpGH84s have different optimum pHs ranging from 5.2 to 7.0. Consistent with their ß-N-acetyl-D-glucosaminidase activities, the structures of the four catalytic modules revealed similar folds with a catalytic site including a conserved -1 subsite that binds GlcNAc. However, nonconserved residues in the vicinity of the +1 subsite suggest different accommodation of the sugar preceding the terminal GlcNAc, resulting in subtly different substrate specificities. This structure-function comparison of the four GH84 catalytic modules from C. perfringens reveals their different biochemical properties, which may relate to how they are deployed in the bacterium's niche in the host.


Assuntos
Clostridium perfringens/enzimologia , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/metabolismo , Biocatálise , Cristalografia por Raios X , Glicosídeo Hidrolases/genética , Humanos , Modelos Moleculares , Conformação Proteica
8.
J Biol Chem ; 292(41): 16955-16968, 2017 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-28827308

RESUMO

BH0236 from Bacillus halodurans is a multimodular ß-1,3-glucanase comprising an N-terminal family 81 glycoside hydrolase catalytic module, an internal family 6 carbohydrate-binding module (CBM) that binds the nonreducing end of ß-1,3-glucan chains, and an uncharacterized C-terminal module classified into CBM family 56. Here, we determined that this latter CBM, BhCBM56, bound the soluble ß-1,3-glucan laminarin with a dissociation constant (Kd ) of ∼26 µm and displayed higher affinity for insoluble ß-1,3-glucans with Kd values of ∼2-10 µm but lacked affinity for ß-1,3-glucooligosaccharides. The X-ray crystal structure of BhCBM56 and NMR-derived chemical shift mapping of the binding site revealed a ß-sandwich fold, with the face of one ß-sheet possessing the ß-1,3-glucan-binding surface. On the basis of the functional and structural properties of BhCBM56, we propose that it binds a quaternary polysaccharide structure, most likely the triple helix adopted by polymerized ß-1,3-glucans. Consistent with the BhCBM56 and BhCBM6/56 binding profiles, deletion of the CBM56 from BH0236 decreased activity of the enzyme on the insoluble ß-1,3-glucan curdlan but not on soluble laminarin; additional deletion of the CBM6 also did not affect laminarin degradation but further decreased curdlan hydrolysis. The pseudo-atomic solution structure of BH0236 determined by small-angle X-ray scattering revealed structural insights into the nature of avid binding by the BhCBM6/56 pair and how the orientation of the active site in the catalytic module factors into recognition and degradation of ß-1,3-glucans. Our findings reinforce the notion that catalytic modules and their cognate CBMs have complementary specificities, including targeting of polysaccharide quaternary structure.


Assuntos
Bacillus/enzimologia , Proteínas de Bactérias/química , Glucana 1,3-beta-Glucosidase/química , Bacillus/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Glucana 1,3-beta-Glucosidase/genética , Glucana 1,3-beta-Glucosidase/metabolismo , Polissacarídeos/química , Polissacarídeos/metabolismo , Estrutura Secundária de Proteína
9.
J Biol Chem ; 292(30): 12606-12620, 2017 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-28588026

RESUMO

Enzyme activities that improve digestion of recalcitrant plant cell wall polysaccharides may offer solutions for sustainable industries. To this end, anaerobic fungi in the rumen have been identified as a promising source of novel carbohydrate active enzymes (CAZymes) that modify plant cell wall polysaccharides and other complex glycans. Many CAZymes share insufficient sequence identity to characterized proteins from other microbial ecosystems to infer their function; thus presenting challenges to their identification. In this study, four rumen fungal genes (nf2152, nf2215, nf2523, and pr2455) were identified that encode family 39 glycoside hydrolases (GH39s), and have conserved structural features with GH51s. Two recombinant proteins, NF2152 and NF2523, were characterized using a variety of biochemical and structural techniques, and were determined to have distinct catalytic activities. NF2152 releases a single product, ß1,2-arabinobiose (Ara2) from sugar beet arabinan (SBA), and ß1,2-Ara2 and α-1,2-galactoarabinose (Gal-Ara) from rye arabinoxylan (RAX). NF2523 exclusively releases α-1,2-Gal-Ara from RAX, which represents the first description of a galacto-(α-1,2)-arabinosidase. Both ß-1,2-Ara2 and α-1,2-Gal-Ara are disaccharides not previously described within SBA and RAX. In this regard, the enzymes studied here may represent valuable new biocatalytic tools for investigating the structures of rare arabinosyl-containing glycans, and potentially for facilitating their modification in industrial applications.


Assuntos
Fungos/enzimologia , Glicosídeo Hidrolases/metabolismo , Rúmen/microbiologia , Animais , Glicosídeo Hidrolases/química , Especificidade por Substrato
10.
Proteins ; 85(1): 182-187, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27756110

RESUMO

The polysaccharide utilization locus in Bacteroides plebeius that confers the ability to catabolize porphyran contains a putative GH50 ß-agarase (BACPLE_01683, BpGH50). BpGH50 did not show any clear activity on agarose or on the related algal galactans porphyran and carrageenan. However, the 1.4 Å resolution X-ray crystal structure of BpGH50 confirmed its possession of the core (α/ß)8 barrel fold found in GH50 enzymes as well as the structural conservation of the catalytic residues and some substrate binding residues. Examination of the structure supports assignment of this protein as a ß-galactosidase but suggests that it may utilize a different, possibly hybrid, algal galactan substrate. Proteins 2016; 85:182-187. © 2016 Wiley Periodicals, Inc.


Assuntos
Proteínas de Bactérias/química , Bacteroidetes/química , Glicosídeo Hidrolases/química , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Bacteroidetes/enzimologia , Bacteroidetes/isolamento & purificação , Domínio Catalítico , Clonagem Molecular , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Microbioma Gastrointestinal/fisiologia , Expressão Gênica , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Humanos , Cinética , Modelos Moleculares , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
11.
PLoS Pathog ; 10(9): e1004364, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25210925

RESUMO

Bacterial cell-surface proteins play integral roles in host-pathogen interactions. These proteins are often architecturally and functionally sophisticated and yet few studies of such proteins involved in host-pathogen interactions have defined the domains or modules required for specific functions. Streptococcus pneumoniae (pneumococcus), an opportunistic pathogen that is a leading cause of community acquired pneumonia, otitis media and bacteremia, is decorated with many complex surface proteins. These include ß-galactosidase BgaA, which is specific for terminal galactose residues ß-1-4 linked to glucose or N-acetylglucosamine and known to play a role in pneumococcal growth, resistance to opsonophagocytic killing, and adherence. This study defines the domains and modules of BgaA that are required for these distinct contributions to pneumococcal pathogenesis. Inhibitors of ß-galactosidase activity reduced pneumococcal growth and increased opsonophagocytic killing in a BgaA dependent manner, indicating these functions require BgaA enzymatic activity. In contrast, inhibitors increased pneumococcal adherence suggesting that BgaA bound a substrate of the enzyme through a distinct module or domain. Extensive biochemical, structural and cell based studies revealed two newly identified non-enzymatic carbohydrate-binding modules (CBMs) mediate adherence to the host cell surface displayed lactose or N-acetyllactosamine. This finding is important to pneumococcal biology as it is the first adhesin-carbohydrate receptor pair identified, supporting the widely held belief that initial pneumococcal attachment is to a glycoconjugate. Perhaps more importantly, this is the first demonstration that a CBM within a carbohydrate-active enzyme can mediate adherence to host cells and thus this study identifies a new class of carbohydrate-binding adhesins and extends the paradigm of CBM function. As other bacterial species express surface-associated carbohydrate-active enzymes containing CBMs these findings have broad implications for bacterial adherence. Together, these data illustrate that comprehending the architectural sophistication of surface-attached proteins can increase our understanding of the different mechanisms by which these proteins can contribute to bacterial pathogenesis.


Assuntos
Aderência Bacteriana , Infecções Pneumocócicas/metabolismo , Streptococcus pneumoniae/enzimologia , beta-Galactosidase/química , beta-Galactosidase/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Cristalografia por Raios X , Inibidores Enzimáticos/metabolismo , Células Epiteliais/enzimologia , Células Epiteliais/imunologia , Interações Hospedeiro-Patógeno , Humanos , Infecções Pneumocócicas/microbiologia , Ligação Proteica , Conformação Proteica , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/crescimento & desenvolvimento
12.
J Biol Chem ; 289(39): 27264-27277, 2014 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-25100731

RESUMO

For a subset of pathogenic microorganisms, including Streptococcus pneumoniae, the recognition and degradation of host hyaluronan contributes to bacterial spreading through the extracellular matrix and enhancing access to host cell surfaces. The hyaluronate lyase (Hyl) presented on the surface of S. pneumoniae performs this role. Using glycan microarray screening, affinity electrophoresis, and isothermal titration calorimetry we show that the N-terminal module of Hyl is a hyaluronan-specific carbohydrate-binding module (CBM) and the founding member of CBM family 70. The 1.2 Å resolution x-ray crystal structure of CBM70 revealed it to have a ß-sandwich fold, similar to other CBMs. The electrostatic properties of the binding site, which was identified by site-directed mutagenesis, are distinct from other CBMs and complementary to its acidic ligand, hyaluronan. Dynamic light scattering and solution small angle x-ray scattering revealed the full-length Hyl protein to exist as a monomer/dimer mixture in solution. Through a detailed analysis of the small angle x-ray scattering data, we report the pseudoatomic solution structures of the monomer and dimer forms of the full-length multimodular Hyl.


Assuntos
Proteínas de Bactérias/química , Polissacarídeo-Liases/química , Multimerização Proteica , Streptococcus pneumoniae/enzimologia , Proteínas de Bactérias/genética , Cristalografia por Raios X , Mutagênese Sítio-Dirigida , Polissacarídeo-Liases/genética , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Streptococcus pneumoniae/genética
13.
Glycobiology ; 25(2): 170-80, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25395406

RESUMO

The binding profiles of many human noroviruses (huNoVs) for human histo-blood group antigens have been characterized. However, quantitative-binding data for these important virus-host interactions are lacking. Here, we report on the intrinsic (per binding site) affinities of HBGA oligosaccharides for the huNoV VA387 virus-like particles (VLPs) and the associated subviral P particles measured using electrospray ionization mass spectrometry. The affinities of 13 HBGA oligosaccharides, containing A, B and H epitopes, with variable sizes (disaccharide to tetrasaccharide) and different precursor chain types (types 1, 2, 3, 5 and 6), were measured for the P particle, while the affinities of the A and B trisaccharides and A and B type 6 tetrasaccharides for the VLP were determined. The intrinsic affinities of the HBGA oligosaccharides for the P particle range from 500 to 2300 M(-1), while those of the A and B trisaccharides and the A and B type 6 tetrasaccharides for the VLP range from 1000 to 4000 M(-1). Comparison of these binding data with those measured previously for the corresponding P dimer reveals that the HBGA oligosaccharides tested exhibit similar intrinsic affinities for the P dimer and P particle. The intrinsic affinities for the VLP are consistently higher than those measured for the P particle, but within a factor of three. While the cause of the subtle differences in HBGA oligosaccharide affinities for the P dimer and P particle and those for the VLP remains unknown, the present data support the use of P dimers or P particles as surrogates to the VLP for huNoV-receptor-binding studies.


Assuntos
Antígenos de Grupos Sanguíneos/química , Proteínas do Capsídeo/química , Norovirus/imunologia , Antígenos de Grupos Sanguíneos/fisiologia , Proteínas do Capsídeo/imunologia , Humanos , Oligossacarídeos/química , Ligação Proteica , Vírion/imunologia
14.
Anal Chem ; 87(9): 4888-96, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25859741

RESUMO

Electrospray ionization-mass spectrometry (ESI-MS) analysis combined with the use of nanodiscs (NDs) to solubilize glycolipids (GLs) has recently emerged as a promising analytical method for detecting protein-GL interactions in vitro and, when applied to libraries of GLs, ranking their affinities. However, there is uncertainty regarding the mechanism(s) of complex formation in solution and the extent to which the relative abundances of protein-glycolipid complexes observed by ESI-MS reflect the relative concentrations in solution. Here, we describe the results of a systematic ESI-MS study aimed at elucidating the processes that influence binding of water-soluble proteins to GLs incorporated into NDs and to exploit these insights to quantify the binding energetics. The interactions between the cholera toxin B subunit homopentamer (CTB5) and its native ganglioside receptor, ß-D-Gal-(1 → 3)-ß-D-GalNAc-(1 → 4)-[α-D-Neu5Ac-(2 → 3)]-ß-D-Gal-(1 → 4)-ß-D-Glc-ceramide (GM1), and between a recombinant fragment of family 51 carbohydrate-binding module (CBM), originating from S. pneumoniae, with a synthetic B type 2 neoglycolipid, α-D-Gal-(1 → 3)-[α-L-Fuc-(1 → 2)]-ß-D-Gal-(1 → 4)-ß-D-GlcNAc-1,2-di-O-dodecyl-sn-glycero (B2NGL) served as model protein-GL complexes for this study. The results of the ESI-MS measurements reveal that proteins bind reversibly to ND-bound GLs and that proteins possessing multiple ligand binding sites are able to interact with GLs originating from different NDs. Experimental evidence suggests that the diffusion of GLs between NDs is rapid and influences the nature of the protein-GL complexes that are detected. Using a newly developed ESI-MS assay, the proxy ligand method, the association constants for the CBM-B2NGL and CTB5-GM1 interactions were quantified and found to be slightly smaller than those for the corresponding oligosaccharides in solution.


Assuntos
Toxina da Cólera/química , Glicolipídeos/química , Nanoestruturas/química , Termodinâmica , Sítios de Ligação , Espectrometria de Massas por Ionização por Electrospray , Vibrio cholerae/química
15.
J Biol Chem ; 288(39): 28078-88, 2013 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-23921382

RESUMO

The bacteria that metabolize agarose use multiple enzymes of complementary specificities to hydrolyze the glycosidic linkages in agarose, a linear polymer comprising the repeating disaccharide subunit of neoagarobiose (3,6-anhydro-l-galactose-α-(1,3)-d-galactose) that are ß-(1,4)-linked. Here we present the crystal structure of a glycoside hydrolase family 50 exo-ß-agarase, Aga50D, from the marine microbe Saccharophagus degradans. This enzyme catalyzes a critical step in the metabolism of agarose by S. degradans through cleaving agarose oligomers into neoagarobiose products that can be further processed into monomers. The crystal structure of Aga50D to 1.9 Å resolution reveals a (ß/α)8-barrel fold that is elaborated with a ß-sandwich domain and extensive loops. The structures of catalytically inactivated Aga50D in complex with non-hydrolyzed neoagarotetraose (2.05 Å resolution) and neoagarooctaose (2.30 Å resolution) provide views of Michaelis complexes for a ß-agarase. In these structures, the d-galactose residue in the -1 subsite is distorted into a (1)S3 skew boat conformation. The relative positioning of the putative catalytic residues are most consistent with a retaining catalytic mechanism. Additionally, the neoagarooctaose complex showed that this extended substrate made substantial interactions with the ß-sandwich domain, which resembles a carbohydrate-binding module, thus creating additional plus (+) subsites and funneling the polymeric substrate through the tunnel-shaped active site. A synthesis of these results in combination with an additional neoagarobiose product complex suggests a potential exo-processive mode of action of Aga50D on the agarose double helix.


Assuntos
Alteromonadaceae/enzimologia , Proteínas de Bactérias/metabolismo , Glicosídeo Hidrolases/metabolismo , Sequência de Aminoácidos , Metabolismo dos Carboidratos , Catálise , Domínio Catalítico , Glicosídeos/metabolismo , Hidrólise , Modelos Moleculares , Dados de Sequência Molecular , Polissacarídeos/metabolismo , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Sefarose/metabolismo , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
16.
J Biol Chem ; 288(31): 22493-505, 2013 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-23770703

RESUMO

Arylamine N-acetyltransferases (NATs), a class of xenobiotic-metabolizing enzymes, catalyze the acetylation of aromatic amine compounds through a strictly conserved Cys-His-Asp catalytic triad. Each residue is essential for catalysis in both prokaryotic and eukaryotic NATs. Indeed, in (HUMAN)NAT2 variants, mutation of the Asp residue to Asn, Gln, or Glu dramatically impairs enzyme activity. However, a putative atypical NAT harboring a catalytic triad Glu residue was recently identified in Bacillus cereus ((BACCR)NAT3) but has not yet been characterized. We report here the crystal structure and functional characterization of this atypical NAT. The overall fold of (BACCR)NAT3 and the geometry of its Cys-His-Glu catalytic triad are similar to those present in functional NATs. Importantly, the enzyme was found to be active and to acetylate prototypic arylamine NAT substrates. In contrast to (HUMAN) NAT2, the presence of a Glu or Asp in the triad of (BACCR)NAT3 did not significantly affect enzyme structure or function. Computational analysis identified differences in residue packing and steric constraints in the active site of (BACCR)NAT3 that allow it to accommodate a Cys-His-Glu triad. These findings overturn the conventional view, demonstrating that the catalytic triad of this family of acetyltransferases is plastic. Moreover, they highlight the need for further study of the evolutionary history of NATs and the functional significance of the predominant Cys-His-Asp triad in both prokaryotic and eukaryotic forms.


Assuntos
Arilamina N-Acetiltransferase/metabolismo , Cisteína/química , Ácido Glutâmico/química , Histidina/química , Sequência de Aminoácidos , Arilamina N-Acetiltransferase/química , Bacillus cereus/enzimologia , Sequência de Bases , Domínio Catalítico , Cristalografia por Raios X , Primers do DNA , Modelos Moleculares , Dados de Sequência Molecular , Reação em Cadeia da Polimerase , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos
17.
Org Biomol Chem ; 11(45): 7907-15, 2013 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-24132305

RESUMO

Streptococcus pneumoniae produces a cell-surface attached ß-N-acetylglucosaminidase called StrH that is used by this pathogen to process the termini of host complex N-linked glycans. N-Acetyl-D-glucosamine-thiazoline (NAG-Thiazoline, NGT) and O-(2-acetamido-2-deoxy-D-glucopyranosylidene)amino N-phenyl carbamate (PUGNAc) are inhibitors of the two family 20 glycoside hydrolase catalytic modules within StrH and these inhibitors have proven useful in modulating the activity of StrH in assays that model aspects of the host-bacterium interaction. Here we explore the molecular basis of StrH inhibition through structural, kinetic, thermodynamic and site-directed mutagenic analyses using the recombinantly produced independent catalytic modules of StrH (GH20A and GH20B) and the inhibitors NGT and PUGNAc. The results reveal a similar binding mode of the sugar moiety of these inhibitors at the -1 subsite in the active sites of GH20A and GH20B. The lower affinity of NGT as compared to PUGNAc for these catalytic modules can be attributed to the hydrophobic phenylcarbamate moiety of PUGNAc that is absent in NGT. This moiety also displayed variations in its interactions with the active sites of GH20A and GH20B that provide a rationale for the 400-fold difference observed in the Ki values of this compound for these two ß-N-acetylglucosaminidase catalytic modules.


Assuntos
Inibidores Enzimáticos/farmacologia , Streptococcus pneumoniae/enzimologia , beta-N-Acetil-Hexosaminidases/antagonistas & inibidores , Biocatálise , Domínio Catalítico/efeitos dos fármacos , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Cinética , Modelos Moleculares , Estrutura Molecular , Mutagênese Sítio-Dirigida , Relação Estrutura-Atividade , Termodinâmica , beta-N-Acetil-Hexosaminidases/genética , beta-N-Acetil-Hexosaminidases/metabolismo
18.
Biochem J ; 445(2): 219-28, 2012 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-22545684

RESUMO

Legionella pneumophila is an opportunistic pathogen and the causative agent of Legionnaires' disease. Despite being exposed to many chemical compounds in its natural and man-made habitats (natural aquatic biotopes and man-made water systems), L. pneumophila is able to adapt and survive in these environments. The molecular mechanisms by which this bacterium detoxifies these chemicals remain poorly understood. In particular, the expression and functions of XMEs (xenobiotic-metabolizing enzymes) that could contribute to chemical detoxification in L. pneumophila have been poorly documented at the molecular and functional levels. In the present paper we report the identification and biochemical and functional characterization of a unique acetyltransferase that metabolizes aromatic amine chemicals in three characterized clinical strains of L. pneumophila (Paris, Lens and Philadelphia). Strain-specific sequence variations in this enzyme, an atypical member of the arylamine N-acetyltransferase family (EC 2.3.1.5), produce enzymatic variants with different structural and catalytic properties. Functional inactivation and complementation experiments showed that this acetyltransferase allows L. pneumophila to detoxify aromatic amine chemicals and grow in their presence. The present study provides a new enzymatic mechanism by which the opportunistic pathogen L. pneumophila biotransforms and detoxifies toxic aromatic chemicals. These data also emphasize the role of XMEs in the environmental adaptation of certain prokaryotes.


Assuntos
Aminas/metabolismo , Arilamina N-Acetiltransferase/metabolismo , Hidrocarbonetos Aromáticos/metabolismo , Legionella pneumophila/enzimologia , Arilamina N-Acetiltransferase/genética , Western Blotting , Dicroísmo Circular , Teste de Complementação Genética , Variação Genética , Inativação Metabólica , Legionella pneumophila/classificação , Legionella pneumophila/genética , Doença dos Legionários/genética , Doença dos Legionários/microbiologia , Filogenia , Dobramento de Proteína , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
19.
Artigo em Inglês | MEDLINE | ID: mdl-22297998

RESUMO

Arylamine N-acetyltransferases (NATs) are xenobiotic metabolizing enzymes (XMEs) that catalyze the acetylation of arylamines. All functional NATs described to date possess a strictly conserved Cys-His-Asp catalytic triad. Here, the purification, crystallization and preliminary X-ray characterization of Bacillus cereus arylamine N-acetyltransferase 3 [(BACCR)NAT3], a putative NAT isoenzyme that possesses a unique catalytic triad containing a glutamate residue, is reported. The crystal diffracted to 2.42 Å resolution and belonged to the monoclinic space group C121, with unit-cell parameters a = 90.44, b = 44.52, c = 132.98 Å, ß = 103.8°.


Assuntos
Arilamina N-Acetiltransferase/química , Bacillus cereus/enzimologia , Arilamina N-Acetiltransferase/isolamento & purificação , Cristalização , Cristalografia por Raios X
20.
Mol Microbiol ; 77(1): 183-99, 2010 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-20497336

RESUMO

The genome of Streptococcus pneumoniae strains, as typified by the TIGR4 strain, contain several genes encoding proteins putatively involved in alpha-glucan degradation, modification and synthesis. The extracellular components comprise an ATP binding cassette-transporter with its solute binding protein, MalX, and the hydrolytic enzyme SpuA. We show that of the commonly occurring exogenous alpha-glucans, S. pneumoniae TIGR4 is only able to grow on glycogen in a MalX- and SpuA-dependent manner. SpuA is able to degrade glycogen into a ladder of alpha-1,4-glucooligosaccharides while the high-affinity interaction (K(a) approximately 10(6) M(-1)) of MalX with maltooligosaccharides plays a key role in promoting the selective uptake of the glycogen degradation products that are produced by SpuA. The X-ray crystallographic analyses of apo- and complexed MalX illuminate the protein's specificity for the degradation products of glycogen and its striking ability to recognize the helical structure of the ligand. Overall, the results of this work provide new structural and functional insight into streptococcal alpha-glucan metabolism while supplying biochemical support for the hypothesis that the substrate of the S. pneumoniaealpha-glucan metabolizing machinery is glycogen, which in a human host is abundant in lung epithelial cells, a common target for invasive S. pneumoniae.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Glicogênio/metabolismo , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/metabolismo , Redes e Vias Metabólicas , Streptococcus pneumoniae/enzimologia , Streptococcus pneumoniae/metabolismo , Cristalografia por Raios X , Modelos Moleculares , Família Multigênica , Oligossacarídeos/metabolismo , Estrutura Terciária de Proteína , Streptococcus pneumoniae/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA