Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Curr Genet ; 63(6): 965-972, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28493119

RESUMO

Adaptation to the changing environmental CO2 levels is essential for all living cells. In particular, microorganisms colonizing and infecting the human body are exposed to highly variable concentrations, ranging from atmospheric 0.04 to 5% and more in blood and specific host niches. Carbonic anhydrases are highly conserved metalloenzymes that enable fixation of CO2 by its conversion into bicarbonate. This process is not only crucial to ensure the supply of adequate carbon amounts for cellular metabolism, but also contributes to several signaling processes in fungi, including morphology and communication. The fungal specific carbonic anhydrase gene NCE103 is transcribed in response to CO2 availability. As recently shown, this regulation relies on the ATF/CREB transcription factor Cst6 and the AGC family protein kinase Sch9. Here, we review the regulatory mechanisms which control NCE103 expression in the model organism Saccharomyces cerevisiae and the pathogenic yeasts Candida albicans and Candida glabrata and discuss which additional factors might contribute in this novel CO2 sensing cascade.


Assuntos
Candida albicans/metabolismo , Candida glabrata/metabolismo , Dióxido de Carbono/metabolismo , Anidrases Carbônicas/genética , Regulação Fúngica da Expressão Gênica , Saccharomyces cerevisiae/metabolismo , Fatores Ativadores da Transcrição/genética , Fatores Ativadores da Transcrição/metabolismo , Adaptação Fisiológica/genética , Bicarbonatos/metabolismo , Biotransformação/genética , Candida albicans/genética , Candida albicans/crescimento & desenvolvimento , Candida glabrata/genética , Candida glabrata/crescimento & desenvolvimento , Ciclo do Carbono/genética , Anidrases Carbônicas/metabolismo , Sequência Conservada , Humanos , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transdução de Sinais
2.
Cell Microbiol ; 18(7): 889-904, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26752615

RESUMO

Intestinal epithelial cells (IEC) form a tight barrier to the gut lumen. Paracellular permeability of the intestinal barrier is regulated by tight junction proteins and can be modulated by microorganisms and other stimuli. The polymorphic fungus Candida albicans, a frequent commensal of the human mucosa, has the capacity of traversing this barrier and establishing systemic disease within the host. Infection of polarized C2BBe1 IEC with wild-type C. albicans led to a transient increase of transepithelial electric resistance (TEER) before subsequent barrier disruption, accompanied by a strong decline of junctional protein levels and substantial, but considerably delayed cytotoxicity. Time-resolved microarray-based transcriptome analysis of C. albicans challenged IEC revealed a prominent role of NF-κB and MAPK signalling pathways in the response to infection. Hence, we inferred a gene regulatory network based on differentially expressed NF-κB and MAPK pathway components and their predicted transcriptional targets. The network model predicted activation of GDF15 by NF-κB was experimentally validated. Furthermore, inhibition of NF-κB activation in C. albicans infected C2BBe1 cells led to enhanced cytotoxicity in the epithelial cells. Taken together our study identifies NF-κB activation as an important protective signalling pathway in the response of epithelial cells to C. albicans.


Assuntos
Candida albicans/patogenicidade , Células Epiteliais/microbiologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Interações Hospedeiro-Patógeno/fisiologia , NF-kappa B/metabolismo , Candidíase/metabolismo , Candidíase/microbiologia , Candidíase/patologia , Linhagem Celular , Células Epiteliais/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Imunidade nas Mucosas/genética , Mucosa Intestinal/citologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , NF-kappa B/genética , Estresse Fisiológico/fisiologia , Proteínas de Junções Íntimas/metabolismo
3.
Mol Ther ; 23(3): 456-64, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25409744

RESUMO

Lysosomal storage disorders (LSD) are a group of heterogeneous diseases caused by compromised enzyme function leading to multiple organ failure. Therapeutic approaches involve enzyme replacement (ERT), which is effective for a substantial fraction of patients. However, there are still concerns about a number of issues including tissue penetrance, generation of host antibodies against the therapeutic enzyme, and financial aspects, which render this therapy suboptimal for many cases. Treatment with pharmacological chaperones (PC) was recognized as a possible alternative to ERT, because a great number of mutations do not completely abolish enzyme function, but rather trigger degradation in the endoplasmic reticulum. The theory behind PC is that they can stabilize enzymes with remaining function, avoid degradation and thereby ameliorate disease symptoms. We tested several compounds in order to identify novel small molecules that prevent premature degradation of the mutant lysosomal enzymes α-galactosidase A (for Fabry disease (FD)) and acid α-glucosidase (GAA) (for Pompe disease (PD)). We discovered that the expectorant Ambroxol when used in conjunction with known PC resulted in a significant enhancement of mutant α-galactosidase A and GAA activities. Rosiglitazone was effective on α-galactosidase A either as a monotherapy or when administered in combination with the PC 1-deoxygalactonojirimycin. We therefore propose both drugs as potential enhancers of pharmacological chaperones in FD and PD to improve current treatment strategies.


Assuntos
1-Desoxinojirimicina/análogos & derivados , Ambroxol/farmacologia , Ativadores de Enzimas/farmacologia , Lisossomos/efeitos dos fármacos , Complexo de Endopeptidases do Proteassoma/efeitos dos fármacos , alfa-Galactosidase/genética , alfa-Glucosidases/genética , 1-Desoxinojirimicina/farmacologia , Acetilcisteína/análogos & derivados , Acetilcisteína/farmacologia , Bezafibrato/farmacologia , Doença de Fabry/tratamento farmacológico , Doença de Fabry/enzimologia , Expressão Gênica , Doença de Depósito de Glicogênio Tipo II/tratamento farmacológico , Doença de Depósito de Glicogênio Tipo II/enzimologia , Células HEK293 , Humanos , Leupeptinas/farmacologia , Lisossomos/metabolismo , Pioglitazona , Plasmídeos/química , Plasmídeos/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteassoma/farmacologia , Estabilidade Proteica , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Tiazolidinedionas/farmacologia , Transfecção , alfa-Galactosidase/metabolismo , alfa-Glucosidases/metabolismo
4.
mBio ; 8(1)2017 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-28143980

RESUMO

Adaptation to alternating CO2 concentrations is crucial for all organisms. Carbonic anhydrases-metalloenzymes that have been found in all domains of life-enable fixation of scarce CO2 by accelerating its conversion to bicarbonate and ensure maintenance of cellular metabolism. In fungi and other eukaryotes, the carbonic anhydrase Nce103 has been shown to be essential for growth in air (~0.04% CO2). Expression of NCE103 is regulated in response to CO2 availability. In Saccharomyces cerevisiae, NCE103 is activated by the transcription factor ScCst6, and in Candida albicans and Candida glabrata, it is activated by its homologues CaRca1 and CgRca1, respectively. To identify the kinase controlling Cst6/Rca1, we screened an S. cerevisiae kinase/phosphatase mutant library for the ability to regulate NCE103 in a CO2-dependent manner. We identified ScSch9 as a potential ScCst6-specific kinase, as the sch9Δ mutant strain showed deregulated NCE103 expression on the RNA and protein levels. Immunoprecipitation revealed the binding capabilities of both proteins, and detection of ScCst6 phosphorylation by ScSch9 in vitro confirmed Sch9 as the Cst6 kinase. We could show that CO2-dependent activation of Sch9, which is part of a kinase cascade, is mediated by lipid/Pkh1/2 signaling but not TORC1. Finally, we tested conservation of the identified regulatory cascade in the pathogenic yeast species C. albicans and C. glabrata Deletion of SCH9 homologues of both species impaired CO2-dependent regulation of NCE103 expression, which indicates a conservation of the CO2 adaptation mechanism among yeasts. Thus, Sch9 is a Cst6/Rca1 kinase that links CO2 adaptation to lipid signaling via Pkh1/2 in fungi. IMPORTANCE: All living organisms have to cope with alternating CO2 concentrations as CO2 levels range from very low in the atmosphere (0.04%) to high (5% and more) in other niches, including the human body. In fungi, CO2 is sensed via two pathways. The first regulates virulence in pathogenic yeast by direct activation of adenylyl cyclase. The second pathway, although playing a fundamental role in fungal metabolism, is much less understood. Here the transcription factor Cst6/Rca1 controls carbon homeostasis by regulating carbonic anhydrase expression. Upstream signaling in this pathway remains elusive. We identify Sch9 as the kinase controlling Cst6/Rca1 activity in yeast and demonstrate that this pathway is conserved in pathogenic yeast species, which highlights identified key players as potential pharmacological targets. Furthermore, we provide a direct link between adaptation to changing CO2 conditions and lipid/Pkh1/2 signaling in yeast, thus establishing a new signaling cascade central to metabolic adaptation.


Assuntos
Proteínas Quinases Dependentes de 3-Fosfoinositídeo/metabolismo , Dióxido de Carbono/metabolismo , Metabolismo dos Lipídeos , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiologia , Transdução de Sinais , Fatores Ativadores da Transcrição/metabolismo , Adenosina Trifosfatases/metabolismo , Candida albicans/genética , Candida glabrata/genética , Anidrases Carbônicas/metabolismo , Deleção de Genes , Regulação Fúngica da Expressão Gênica , Metaloendopeptidases/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas Serina-Treonina Quinases/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA