RESUMO
Measurement of molecular weight is an integral part of macromolecular and polymer characterization which usually has limitations. Herein, this article presents the use of a bench-top 80 MHz Nuclear Magnetic Resonance (NMR) spectrometer for diffusion-ordered spectroscopy as a practical and rapid approach for the determination of molecular weight/size using a novel solvent and polymer-independent universal calibration.
Assuntos
Substâncias Macromoleculares , Espectroscopia de Ressonância Magnética , Peso Molecular , Polímeros , Polímeros/química , Espectroscopia de Ressonância Magnética/métodos , Substâncias Macromoleculares/química , DifusãoRESUMO
General routes for the synthesis of silica-immobilized symmetrical and unsymmetrical salophen and salen ligands and metal complexes have been developed starting from the natural product 4-allylanisole (methyl-chavicol and estragole). The key step of the syntheses is a microwave-assisted, platinum oxide catalyzed hydrosilylation of the terminal alkene of 5-allyl-2-hydroxybenzaldehyde to afford a sol-gel precursor which can be immobilized into silica before or after conversion to salen and salophen ligands to afford unsymmetrical and symmetrical silica-supported ligands, respectively. Both the symmetrical and unsymmetrical silica-supported salophens were found to catalyze the formation of cyclic carbonates from epoxides and carbon dioxide with catalytic activities at least comparable to those previously reported for non-immobilized homogeneous salophens. This reaction could also be carried out in a multi-phase flow reactor using ethyl acetate solutions of 3-phenoxypropylene oxide. Metal complexes of the silica-immobilized ligands could be prepared, and the aluminum complexes were also found to catalyze cyclic carbonate formation.
RESUMO
Knowledge of molecular weight is an integral factor in polymer synthesis, and while many synthetic strategies have been developed to help control this, determination of the final molecular weight is often only measured at the end of the reaction. Herein, we provide a technique for the online determination of polymer molecular weight using a universal, solvent-independent diffusion ordered spectroscopy (DOSY) calibration and evidence its use in a variety of polymerization reactions.