Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Glob Chang Biol ; 30(1): e17120, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38273495

RESUMO

Shallow thermokarst lakes are important sources of greenhouse gases (GHGs) such as methane (CH4 ) and carbon dioxide (CO2 ) resulting from continuous permafrost thawing due to global warming. Concentrations of GHGs dissolved in water typically increase with decreasing lake size due to coastal abrasion and organic matter delivery. We hypothesized that (i) CH4 oxidation depends on the natural oxygenation gradient in the lake water and sediments and increases with lake size because of stronger wind-induced water mixing; (ii) CO2 production increases with decreasing lake size, following the dissolved organic matter gradient; and (iii) both processes are more intensive in the upper than deeper sediments due to the in situ gradients of oxygen (O2 ) and bioavailable carbon. We estimated aerobic CH4 oxidation potentials and CO2 production based on the injection of 13 C-labeled CH4 in the 0-10 cm and 10-20 cm sediment depths of small (~300 m2 ), medium (~3000 m2 ), and large (~106 m2 ) shallow thermokarst lakes in the West Siberian Lowland. The CO2 production was 1.4-3.5 times stronger in the upper sediments than in the 10-20 cm depth and increased from large (158 ± 18 nmol CO2 g-1 sediment d.w. h-1 ) to medium and small (192 ± 17 nmol CO2 g-1 h-1 ) lakes. Methane oxidation in the upper sediments was similar in all lakes, while at depth, large lakes had 14- and 74-fold faster oxidation rates (5.1 ± 0.5 nmol CH4 -derived CO2 g-1 h-1 ) than small and medium lakes, respectively. This was attributed to the higher O2 concentration in large lakes due to the more intense wind-induced water turbulence and mixing than in smaller lakes. From a global perspective, the CH4 oxidation potential confirms the key role of thermokarst lakes as an important hotspot for GHG emissions, which increase with the decreasing lake size.


Assuntos
Gases de Efeito Estufa , Lagos , Metano/análise , Dióxido de Carbono/análise , Oxirredução , Água
2.
Environ Res ; 252(Pt 4): 119115, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38729413

RESUMO

Thermokarst (thaw) lakes of permafrost peatlands are among the most important sentinels of climate change and sizable contributors of greenhouse gas emissions (GHG) in high latitudes. These lakes are humic, often acidic and exhibit fast growing/drainage depending on the local environmental and permafrost thaw. In contrast to good knowledge of the thermokarst lake water hydrochemistry and GHG fluxes, the sediments pore waters remain virtually unknown, despite the fact that these are hot spots of biogeochemical processes including GHG generation. Towards better understating of dissolved organic matter (DOM) quality at the lake water - sediment interface and in the sediments pore waters, here we studied concentration and optical (UV, visual) properties of DOM of 11 thermokarst lakes located in four permafrost zones of Western Siberia Lowland. We found systematic evaluation of DOM concentration, SUVA and various optical parameters along the vertical profile of lake sediments. The lake size and hence, the stage of lake development, had generally weak control on DOM quality. The permafrost zone exhibited clear impact on DOM porewater concentration, optical characteristics, aromaticity and weight average molecular weight (WAMW). The lowest quality of DOM, reflected in highest SUVA and WAMW, corresponding to the dominance of terrestrial sources, was observed at the southern boundary of the permafrost, in the sporadic/discontinuous zone. This suggests active mobilization of organic matter leachates from the interstitial peat and soil porewaters to the lake, presumably via subsurface or suprapermafrost influx. Applying a substitute space for time scenario for future evolution of OM characteristics in thermokarst lake sediments of Western Siberia, we foresee a decrease of DOM quality, molecular weight and potential bioavailability in lakes of continuous permafrost zone, and an increase in these parameters in the sporadic/discontinuous permafrost zone.


Assuntos
Sedimentos Geológicos , Lagos , Pergelissolo , Sibéria , Lagos/química , Sedimentos Geológicos/química , Sedimentos Geológicos/análise , Monitoramento Ambiental , Substâncias Húmicas/análise , Compostos Orgânicos/análise
3.
Proc Natl Acad Sci U S A ; 115(50): E11586-E11594, 2018 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-30478039

RESUMO

Midlatitude anthropogenic mercury (Hg) emissions and discharge reach the Arctic Ocean (AO) by atmospheric and oceanic transport. Recent studies suggest that Arctic river Hg inputs have been a potentially overlooked source of Hg to the AO. Observations on Hg in Eurasian rivers, which represent 80% of freshwater inputs to the AO, are quasi-inexistent, however, putting firm understanding of the Arctic Hg cycle on hold. Here, we present comprehensive seasonal observations on dissolved Hg (DHg) and particulate Hg (PHg) concentrations and fluxes for two large Eurasian rivers, the Yenisei and the Severnaya Dvina. We find large DHg and PHg fluxes during the spring flood, followed by a second pulse during the fall flood. We observe well-defined water vs. Hg runoff relationships for Eurasian and North American Hg fluxes to the AO and for Canadian Hg fluxes into the larger Hudson Bay area. Extrapolation to pan-Arctic rivers and watersheds gives a total Hg river flux to the AO of 44 ± 4 Mg per year (1σ), in agreement with the recent model-based estimates of 16 to 46 Mg per year and Hg/dissolved organic carbon (DOC) observation-based estimate of 50 Mg per year. The river Hg budget, together with recent observations on tundra Hg uptake and AO Hg dynamics, provide a consistent view of the Arctic Hg cycle in which continental ecosystems traffic anthropogenic Hg emissions to the AO via rivers, and the AO exports Hg to the atmosphere, to the Atlantic Ocean, and to AO marine sediments.


Assuntos
Poluentes Atmosféricos/análise , Mercúrio/análise , Poluentes Químicos da Água/análise , Regiões Árticas , Ásia , Oceano Atlântico , Monitoramento Ambiental , Europa (Continente) , Inundações , Humanos , Modelos Teóricos , Rios/química , Estações do Ano
4.
Environ Sci Technol ; 54(11): 6741-6750, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32352767

RESUMO

The response in metal concentrations and isotopic composition to variations in photosynthetic activity of aquatic micro-organisms is crucially important for understanding the environmental controls on metal fluxes and isotope excursions. Here we studied the impacts of two successive diel cycles on physicochemical parameters, Cu and Zn concentrations, and isotopic composition in solution in the presence of mature phototrophic biofilm in a rotating annular bioreactor. The diel cycles induced fluctuations in temperature, pH, and dissolved oxygen concentration following the variation in the photosynthesis activity of the biofilm. Diel variations in metal concentrations were primarily related to the pH variation, with an increase in metal concentration in solution related to a pH decrease. For both metals, δ(66Zn) and δ(65Cu) in solution exhibited complex but reproducible diel cycles. Diel variations in photosynthetic activity led to alternatively positive and negative isotope fractionation, producing the sorption of light Zn (Δ(66Znsorbed-solution) = -0.1 ± 0.06‰) and heavy Cu isotopes (Δ(65Cusorbed-solution) = +0.17 ± 0.06‰) during the day at high pH and the excretion of lighter Zn isotopes (-0.4‰ < Δ(66Znexcreted-biofilm) < +0.14‰) and heavy Cu isotopes (Δ(65Cuexcreted-biofilm) = +0.7 ± 0.3‰) during the night at lower pH. We interpreted Zn and Cu diel cycles as a combination of a desorption of exopolymeric substance-metal complexes and a small active efflux during the night with adsorption and incorporation via an active uptake during the day. The hysteresis of metal concentration in solution over the diel cycle suggested the more important role of uptake compared to desorption and efflux from the biofilm. The phototrophic biofilm presents a non-negligible highly labile metal pool with important potential for contrasting isotopic fractionation at the diel scale.


Assuntos
Cobre , Zinco , Biofilmes , Isótopos , Compostos Orgânicos
5.
Environ Sci Technol ; 53(19): 11183-11194, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31483618

RESUMO

Biodegradation and photolysis of dissolved organic matter (DOM) in boreal high-latitude waters are the two main factors controlling not only the aquatic fluxes and residence time of carbon but also metal nutrients associated with DOM such as Fe. The DOM is usually present in the form of organic and organomineral colloids, which also account for the majority of dissolved Fe. Here, we use the stable Fe isotope approach to unravel the processes controlling Fe behavior during bio- and photodegradation of colloids in boreal Fe- and DOM-rich humic waters (a stream and a fen). The adsorption of Fe colloids onto heterotrophic bacteria Pseudomonas aureofaciens produced enrichment in +0.4‰ (δ57Fe) in the heavier isotopes of the cell surface relative to the remaining solution. In contrast, long-term assimilation of Fe by live cells yielded preferential incorporation of lighter isotopes into the cells (-0.7‰ relative to aqueous solution). The sunlight-induced oxidation of Fe(II) in fen water led to the removal of heavier Fe isotopes (+1.5 to +2.5‰) from solution, consistent with Fe(III) hydroxide precipitation from Fe(II)-bearing solution. Altogether, bio- and photodegradation of organoferric colloids, occurring within a few days of exposure time, can produce several per mil isotopic excursions in shallow lentic and lothic inland waters of high-latitude boreal regions. Considerable daily scale variations of Fe isotopic composition should therefore be taken into account during the interpretation of the riverine flux of Fe isotopes to the ocean or tracing weathering processes using Fe isotopes in surface waters at high latitudes.


Assuntos
Coloides , Compostos Férricos , Isótopos de Ferro , Metais , Fotólise
6.
Environ Microbiol ; 20(7): 2422-2437, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29687572

RESUMO

Using the 16S rRNA and mcrA genes, we investigated the composition, abundance and activity of sediment archaeal communities within 18 high-mountain lakes under contrasted metal levels from different origins (bedrock erosion, past-mining activities and atmospheric depositions). Bathyarchaeota, Euryarchaeota and Woesearchaeota were the major phyla found at the meta-community scale, representing 48%, 18.3% and 15.2% of the archaeal community respectively. Metals were equally important as physicochemical variables in explaining the assemblage of archaeal communities and their abundance. Methanogenesis appeared as a process of central importance in the carbon cycle within sediments of alpine lakes as indicated by the absolute abundance of methanogen 16S rRNA and mcrA gene transcripts (105 to 109 copies g-1 ). We showed that methanogen abundance and activity were significantly reduced with increasing concentrations of Pb and Cd, two indicators of airborne metal contaminations. Considering the ecological importance of methanogenesis in sediment habitats, these metal contaminations may have system wide implications even in remote area such as alpine lakes. Overall, this work was pioneer in integrating the effect of long-range atmospheric depositions on archaeal communities and indicated that metal contamination might significantly compromise the contribution of Archaea to the carbon cycling of the mountain lake sediments.


Assuntos
Archaea/efeitos dos fármacos , Lagos/microbiologia , Metais/toxicidade , Microbiologia da Água , Poluentes Químicos da Água/toxicidade , Archaea/genética , Ciclo do Carbono , DNA Arqueal , Ecossistema , Sedimentos Geológicos/microbiologia , Filogenia , RNA Ribossômico 16S
7.
Environ Sci Technol ; 52(18): 10254-10262, 2018 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-30148609

RESUMO

Little is known about the sources and processing of selenium, an important toxicant and essential micronutrient, within boreal and sub-arctic environments. Upon climate warming and permafrost thaw, the behavior of Se in northern peatlands becomes an issue of major concern, because a sizable amount of Se can be emitted to the atmosphere from thawing soils and inland water surfaces and exported to downstream waters, thus impacting the Arctic biota. Working toward providing a first-order assessment of spatial and temporal variation of Se concentration in thermokarst waters of the largest frozen peatland in the world, we sampled thaw lakes and rivers across a 750-km latitudinal profile. This profile covered sporadic, discontinuous, and continuous permafrost regions of western Siberia Lowland (WSL), where we measured dissolved (<0.45 µm) Se concentration during spring (June), summer (August), and autumn (September). We found maximum Se concentration in the discontinuous permafrost zone. Considering all sampled lakes, Se exhibited linear relationship ( R2 = 0.7 to 0.9, p < 0.05, n ≈ 70) with dissolved organic carbon (DOC) concentration during summer and autumn. Across the permafrost gradient, the lakes in discontinuous permafrost regions demonstrated stronger relationship with DOC and UV-absorbance compared to lakes in sporadic/isolated and continuous permafrost zones. Both seasonal and spatial features of Se distribution in thermokarst lakes and ponds suggest that Se is mainly released during thawing of frozen peat. Mobilization and immobilization of Se within peat-lake-river watersheds likely occurs as organic and organo-Fe, Al colloids, probably associated with reduced and elemental Se forms. The increase of active layer thickness may enhance leaching of Se in the form of organic complexes with aromatic carbon from the deep horizons of the peat profile. Further, the northward shift of permafrost boundaries in WSL may sizably increase Se concentration in lakes of continuous permafrost zone.


Assuntos
Pergelissolo , Selênio , Regiões Árticas , Lagos , Estações do Ano , Sibéria
8.
Geochem Trans ; 16: 3, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25931985

RESUMO

Stable Zn isotopes fractionation was studied in main biogeochemical compartments of a pristine larch forest of Central Siberia developed over continuous permafrost basalt rocks. Two north- and south-oriented watershed slopes having distinctly different vegetation biomass and active layer depth were used as natural proxy for predicting possible future climate changes occurring in this region. In addition, peat bog zone exhibiting totally different vegetation, hydrology and soil temperature regime has been studied. The isotopic composition of soil profile from Central Siberia is rather constant with a δ(66)Zn value around 0.2‰ close to the value of various basalts. Zn isotopic composition in mosses (Sphagnum fuscum and Pleurozium schreberi) exhibits differences between surface layers presenting values from 0.14 to 0.2‰ and bottom layers presenting significantly higher values (0.5 - 0.7‰) than the underlain mineral surface. The humification of both dead moss and larch needles leads to retain the fraction where Zn bound most strongly thus releasing the lighter isotopes in solution and preserving the heavy isotopes in the humification products, in general accord with previous experimental and modeling works [GCA 75:7632-7643, 2011]. The larch (Larix gmelinii) from North and South-facing slopes is enriched in heavy isotopes compared to soil reservoir while larch from Sphagnum peatbog is enriched in light isotopes. This difference may result from stronger complexation of Zn by organic ligands and humification products in the peat bog compared to mineral surfaces in North- and South-facing slope. During the course of the growing period, Zn followed the behavior of macronutrients with a decrease of concentration from June to September. During this period, an enrichment of larch needles by heavier Zn isotopes is observed in the various habitats. We suggest that the increase of the depth of rooting zone, and the decrease of DOC and Zn concentration in soil solution from the root uptake zone with progressively thawing soil could provoke heavy isotopes to become more available for the larch roots at the end of the vegetative season compared to the beginning of the season, because the decrease of DOC will facilitate the uptake of heavy isotope as it will be less retained in strong organic complexes.

9.
Environ Sci Technol ; 48(13): 7660-8, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24905585

RESUMO

Mercury (Hg) emissions from coal combustion contribute approximately half of anthropogenic Hg emissions to the atmosphere. With the implementation of the first legally binding UNEP treaty aimed at reducing anthropogenic Hg emissions, the identification and traceability of Hg emissions from different countries/regions are critically important. Here, we present a comprehensive world coal Hg stable isotope database including 108 new coal samples from major coal-producing deposits in South Africa, China, Europe, India, Indonesia, Mongolia, former USSR, and the U.S. A 4.7‰ range in δ(202)Hg (-3.9 to 0.8‰) and a 1‰ range in Δ(199)Hg (-0.6 to 0.4‰) are observed. Fourteen (p < 0.05) to 17 (p < 0.1) of the 28 pairwise comparisons between eight global regions are statistically distinguishable on the basis of δ(202)Hg, Δ(199)Hg or both, highlighting the potential application of Hg isotope signatures to coal Hg emissions tracing. A revised coal combustion Hg isotope fractionation model is presented, and suggests that gaseous elemental coal Hg emissions are enriched in the heavier Hg isotopes relative to oxidized forms of emitted Hg. The model explains to first order the published δ(202)Hg observations on near-field Hg deposition from a power plant and global scale atmospheric gaseous Hg. Yet, model uncertainties appear too large at present to permit straightforward Hg isotope source identification of atmospheric forms of Hg. Finally, global historical (1850-2008) coal Hg isotope emission curves were modeled and indicate modern-day mean δ(202)Hg and Δ(199)Hg values for bulk coal emissions of -1.2 ± 0.5‰ (1SD) and 0.05 ± 0.06‰ (1SD).


Assuntos
Poluentes Atmosféricos/química , Carvão Mineral/análise , Internacionalidade , Mercúrio/análise , Mercúrio/química , Fracionamento Químico , China , Florida , Isótopos de Mercúrio/análise , Peso Molecular , Centrais Elétricas , Rios
10.
Sci Total Environ ; : 174735, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-39004354

RESUMO

Particulate suspended matter (PSM) of rivers is a significant factor for carbon, nutrient, and trace metal transfer from land to ocean. Towards better understanding the role that PSM exerts on major and trace elements in riverine systems, here we report the results of an experimental study which utilizes a two-fold approach to assess interaction between PSM and riverine solutes. First, we measured element leaching (via desorption and dissolution in distilled water, simulating snow melt) from PSM of the largest Siberian river, the Ob River. Second, we quantified the capacity of PSM to adsorb dissolved organic carbon (DOC), macro- and micronutrients and trace elements from organic-rich waters of the river floodplain. We documented sizable desorption of organic carbon, some major and trace metals, oxyanions and insoluble elements from PSM; the majority (>50 %) of elements were released over the first hour of reaction. In contrast, PSM of the Ob River was capable of removing 20 to 90 % of dissolved OC, nutrients (Si, P), and trace elements from the tributary and floodplain fen. Our experiments demonstrated preferential adsorption of aromatic compounds large molecular size colloids. Taken together, the adsorption of solutes by PSM can sizably decrease the concentration and modify the molecular size distribution, and therefore the potential bioavailability of major (DOC, P, Si) and trace micronutrients. Overall, the PSM of the Ob River exhibited high reactivity with respect to natural waters and was capable of modifying the elemental composition of the tributary and floodplain fen waters. This transfer of organic carbon and nutrients in the surface-adsorbed (particulate) form is especially important during spring flood and requires specific consideration in short-term biogeochemical cycles of elements in continental waters.

11.
Sci Total Environ ; 936: 173491, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38796013

RESUMO

In order to foresee the impact of permafrost thaw on CO2 emissions by high-latitude rivers, in-situ measurements across a permafrost and climate/vegetation gradient, coupled with assessment of possible physico-chemical and landscape controlling factors are necessary. Here we chose 34 catchments of variable stream order (1 to 9) and watershed size (1 to >105 km2) located across a permafrost and biome gradient in the Western Siberian Lowland (WSL), from the permafrost-free southern taiga to the continuous permafrost zone of tundra. Across the south-north transect, maximal CO2 emissions (2.2 ± 1.1 g C-CO2 m-2 d-1) occurred from rivers of the discontinuous/sporadic permafrost zone, i.e., geographical permafrost thawing boundary. In this transitional zone, fluvial C emission to downstream export ratio was as high as 8.0, which greatly (x 10) exceeded the ratio in the permafrost free and continuous permafrost zones. Such a high evasion at the permafrost thawing front can stem from an optimal combination of multiple environmental factors: maximal active layer thickness, sizable C stock in soils, and mobilization of labile organic nutrients from dispersed peat ice that enhanced DOC and POC processing in the water column, likely due to priming effect. Via a substituting space for time approach, we foresee an increase in CO2 and CH4 fluvial evasion in the continuous and discontinuous permafrost zone, which is notably linked to the greening of tundra increases in biomass of the riparian vegetation, river water warming and thermokarst lake formation on the watershed.

12.
Environ Sci Process Impacts ; 26(2): 344-356, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38169006

RESUMO

Despite the importance of structural control on metal stable isotope fractionation in inorganic and abiotic systems, the link between metal structural changes and related isotopic fractionation during reactions with organic surfaces and live cells remains poorly established. We conducted reversible adsorption of Fe(II) and Fe(III) on the surface of exopolysaccharide (EPS)-rich and EPS-poor Pseudomonas aureofaciens, and we allowed Fe intracellular uptake by growing cells. We analyzed the Fe isotopic composition of the remaining fluid and cell biomass, and compared the isotopic fractionation during adsorption and assimilation reaction with relative changes in Fe structural status between aqueous solution and bacterial cells, based on available and newly collected X-ray absorption spectroscopy (XAS) observations. Iron(III) adsorption onto P. aureofaciens at 2.8 ≤ pH ≤ 6.0 produced an enrichment of the cell surface in heavier isotopes with Δ57Fecell-solution ranging from +0.7 to +2.1‰, without a link to pH in EPS-rich cultures. In contrast, the magnitude of isotopic fractionation increased with pH in EPS-poor cultures. Iron(II) adsorption produced an even larger enrichment of the cell surface in heavier isotopes, by up to 3.2‰, tentatively linked to Fe(III) hydroxide precipitation. Intracellular assimilation of Fe(II) favored heavier isotopes and led to Δ57Fecell-solution of +0.8‰. In addition, Fe(III) cellular uptake produced an enrichment of the bacterial biomass in lighter isotopes with Δ57Fecell-solution of -1‰. The XAS analyses demonstrated the dominance of Fe(III)-phosphate complexes both at the cell surface and in the cell interior. We suggest that heavier isotope enrichment of the cell surface relative to the aqueous solution is due to strong Fe(III)-phosphoryl surface complexes and Fe complexation to ligands responsible for metal transfer from the surface to the inner cell. In case of Fe(II) adsorption or assimilation, its partial oxidation within the cell compartments may lead to cell enrichment in heavier isotopes. In contrast, loss of symmetry of assimilated Fe(III) relative to the aqueous Fe3+ ion and longer bonds of intracellular ions relative to aqueous Fe(III)-citrate or hydroxo-complexes could produce an enrichment of cells in lighter isotopes. The versatile nature of Fe(II) and Fe(III) fractionation without a distinct effect of pH and surface exopolysaccharide coverage suggests that, in natural soil and sedimentary environments, Fe isotope fractionation during interaction with heterotrophic bacteria will be primarily governed by Fe complexation with DOM and Fe redox status in the soil pore water.


Assuntos
Compostos Férricos , Solo , Compostos Férricos/química , Adsorção , Ferro/química , Isótopos , Metais , Bactérias/metabolismo , Água , Compostos Ferrosos , Oxirredução
13.
Environ Pollut ; 342: 123098, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38072020

RESUMO

High altitude (alpine) lakes are efficient sentinels of environmental processes, including local pollution and long-range atmospheric transfer, because these lakes are highly vulnerable to ongoing climate changes and increasing anthropogenic pressure. Towards improving the knowledge of trace element geochemistry in the water column of alpine lakes, we assessed 64 physico-chemical parameters, including macro- and micronutrients, major and trace element concentrations in the water column of 18 lakes in the Pyrenees, located along the border between France and Spain. Lake depth, morphology, retention time and watershed rock lithology did not exhibit sizable impact on major and trace element concentrations in the water column. However, acidic (pH = 4.7 ± 0.2) lakes were distinctly different from circumneutral lakes (pH = 6.8 ± 0.5) as they exhibited >10 times higher concentrations of SO42- and trace metals (Fe, Mn, Zn, Cd, Pb, Co, Ni, Be, Al, Ga and REEs). While some of these elements clearly mark the presence of sulphide-rich minerals within the watershed (Fe, Zn, Cd and Pb), the increased mobility of lithogenic elements (Be, Al, Ga and REEs) in acidic lakes may reflect the leaching of these elements from silicate dust derived from atmospheric deposits or surrounding granites. At the same time, compared to circumneutral lakes, acidic lake water displayed lower concentrations of dissolved oxyanions (As, Mo, V, B and W) and elevated SO42- concentrations. The latter could lead to efficient Ba removal from the water column. The exploitation of metal ores within the watershed of three lakes clearly impacted high Zn and Cd concentrations observed in their water column, despite two of these lakes not being acidic. We conclude that local impacts have a greater effect on the water column than long-range atmospheric inputs and that dissolved trace element concentration measurements can be used for revealing sulphide-rich minerals or acid mine drainage within the lakes' watershed.


Assuntos
Metais Pesados , Oligoelementos , Poluentes Químicos da Água , Oligoelementos/análise , Lagos , Água , Altitude , Cádmio , Chumbo , Minerais , Sulfetos , Monitoramento Ambiental , Poluentes Químicos da Água/análise , Metais Pesados/análise
14.
Sci Total Environ ; 922: 171284, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38432389

RESUMO

Humic thermokarst lakes of permafrost peatlands in Western Siberia Lowland (WSL) are major environmental controllers of carbon and nutrient storage in inland waters and greenhouse gases emissions to the atmosphere in the subarctic. In contrast to sizable former research devoted to hydrochemical and hydrobiological (phytoplankton) composition, zooplankton communities of these thermokarst lakes and thaw ponds remain poorly understood, especially along the latitudinal gradient, which is a perfect predictor of permafrost zones. To fill this gap, 69 thermokarst lakes of the WSL were sampled using unprecedented spatial coverage, from continuous to sporadic permafrost zone, in order to assess zooplankton (Cladocera, Copepoda, Rotifera) diversity and abundance across three main open water physiological seasons (spring, summer and autumn). We aimed at assessing the relationship of environmental factors (water column hydrochemistry, nutrients, and phytoplankton parameters) with the abundance and diversity of zooplankton. A total of 74 zooplankton species and taxa were detected, with an average eight taxa per lake/pond. Species richness increased towards the north and reached the maximum in the continuous permafrost zone with 13 species found in this zone only. In contrast, the number of species per waterbody decreased towards the north, which was mainly associated with a decrease in the number of cladocerans. Abundance and diversity of specific zooplankton groups strongly varied across the seasons and permafrost zones. Among the main environmental controllers, Redundancy Analysis revealed that water temperature, lake area, depth, pH, Dissolved Inorganic and Organic Carbon and CO2 concentrations were closely related to zooplankton abundance. Cladocerans were positively related to water temperature during all seasons. Copepods were positively related to depth and lake water pH in all seasons. Rotifers were related to different factors in each season, but were most strongly associated with DOC, depth, CH4, phytoplankton and cladoceran abundance. Under climate warming scenario, considering water temperature increase and permafrost boundary shift northward, one can expect an increase in the diversity and abundance of cladocerans towards the north which can lead to partial disappearance of copepods, especially rare calanoid species.


Assuntos
Cladocera , Copépodes , Pergelissolo , Rotíferos , Animais , Estações do Ano , Sibéria , Zooplâncton/fisiologia , Lagos/química , Rotíferos/fisiologia , Fitoplâncton/fisiologia , Copépodes/fisiologia , Carbono , Água
15.
Sci Total Environ ; 913: 169764, 2024 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-38176565

RESUMO

Plant phytoliths, which represent the main pool of silica (Si) in the form of hydrous Si oxide, are capable of providing valuable information on different aspect of environmental issues including paleo-environmental reconstruction and agricultural sustainability. Phytoliths may have different chemical composition, which, in turn, affects their preservation in soils ad impacts terrestrial cycle of the occluded elements including micro-nutrients and environmental toxicants. Yet, in contrast to sizable work devoted to phytoliths formation, dissolution and physico-chemical properties, the mechanisms that control total (major and trace) elemental composition and the impact that various elements exert on phytolith reactivity and preservation in soils remains poorly known. In order to fil this gap in knowledge, here we combined two different approaches - analytical trace element geochemistry and experimental physical chemistry. First, we assessed full elemental composition of phytoliths from different plants via measuring major and trace elements in 9 samples of grasses collected in northern Eurasia during different seasons, 18 grasses from Siberian regions, and 4 typical Si-concentrating plants (horsetail, larch, elm and tree fern). We further assessed the dissolution rates of phytoliths exhibiting drastically different concentrations of trace metals. In the European grasses, the variations of phytolith chemical composition among species were highly superior to the variations across vegetative season. Compared to European samples, Siberian grass phytoliths were impoverished in Ca and Sr, exhibited similar concentrations of Li, B, Na, Mg, K, V, Zn, Ni, Mo, As, Ba, and U, and were strongly enriched (x 100-1000) in lithogenic elements (trivalent and tetravalent hydrolysates), P, Mn, Fe and divalent metals. Overall, the variations in elemental composition between different species of the same region were lower compared to variations of the same species from distant regions. The main factors controlling phytoliths elemental composition are the far-range atmospheric (dust) transfer, climatic conditions (humidity), and, in a lesser degree, local lithology and anthropogenic pollution. Despite significant, up to 3 orders of magnitude, difference in TE composition of grass and other plant phytoliths, the dissolution rates of grass phytoliths measured in this study were similar, within the experimental uncertainty, to those of other plants studied in former works. Therefore, elemental composition of phytoliths has relatively minor impact on their preservation in soils.

16.
Metabolites ; 13(6)2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37367884

RESUMO

Among the various exometabolitic effects of marine microorganisms, massive mucilage events in the coastal zones of temperate and tropical seas are the most spectacular and environmentally important. Abundant mucilage material in the form of aggregates appears in late spring/early summer in the water column of the Adriatic Sea. These macroaggregate biopolymers originate mainly from plankton exometabolites, with both autochthonous and allochthonous components, and strongly impact the tourism, fisheries, and economy of coastal countries. In contrast to extensive studies on the structural and chemical nature of macroaggregates performed over past decades, the full elemental composition of these substances remains poorly known, which does not allow for a complete understanding of their origin, evolution, and necessary remediation measures. Here, we report the results of comprehensive analyses of 55 major and trace elements in the composition of macro aggregates collected at the surface and in the water column during massive mucilage events. Through normalization of the elemental chemical composition of the upper earth crust (UCC), river suspended material (RSM), mean oceanic plankton, and mean oceanic particulate suspended material, we demonstrate that the water column macroaggregates reflect a superposition of the signal from plankton and marine particulate matter. The surface macroaggregates were preferentially enriched in lithogenic component, and carried the signature of planktonic material. The rare earth element (REE) signal was strongly dominated by plankton and, to a lesser degree, by oceanic particulate matter, while at the same time being strongly (>80 times) impoverished compared with UCC and RSM. Taken together, the elemental composition of macroaggregates allows for distinguishing the lithogenic and biogenic impacts on the occurrence of these unique large-scale mucilage events, linked to the exometabolism of marine plankton combined with the input of allochthonous inorganic material.

17.
Environ Sci Process Impacts ; 25(3): 659-669, 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36806306

RESUMO

Within a global warming trend, invasive cyanobacteria, abundant in tropical and temperate regions, can migrate northward and colonize thermokarst lakes in permafrost-affected territories. For a better understanding of the cyanobacterial proliferation mechanism in those lakes, we performed laboratory growth of typical invasive cyanobacteria, Microcystis aeruginosa, onto various organic-rich solutions representative of permafrost peatlands. Aqueous leachates of lichen, moss and peat were the most favorable substrates for massive growth. The growth in the presence of all organic substrates produced an increase in solution pH by two units and a sizable (30-50%) decrease in the concentration of dissolved organic carbon. The observed increase in the dissolved organic carbon aromaticity degree likely reflected preferential cyanobacterial uptake of aliphatic, optically transparent organic substances. Cyanobacterial growth over a bloom period can create a carbon sink (uptake of 2.5 and 8.3 g C-CO2 m-2 d-1) that can offset the net heterotrophic status of thermokarst lakes in permafrost peatlands, thus switching the lake status from a C source to a C sink. Therefore, predictions of future carbon exchanges with the atmosphere in surface waters of permafrost peatlands require explicit accounting for the possibility of invasive cyanobacterial growth.


Assuntos
Cianobactérias , Microcystis , Pergelissolo , Pergelissolo/química , Matéria Orgânica Dissolvida , Solo/química , Lagos
18.
Sci Total Environ ; 859(Pt 1): 160202, 2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36395838

RESUMO

Despite the importance of small and medium size rivers of Siberian boreal zone in greenhouse gases (GHG) emission, major knowledge gaps exist regarding its temporal variability and controlling mechanisms. Here we sampled 11 pristine rivers of the southern taiga biome (western Siberia Lowland, WSL), ranging in watershed area from 0.8 to 119,000 km2, to reveal temporal pattern and examine main environmental controllers of GHG emissions from the river water surfaces. Floating chamber measurements demonstrated that CO2 emissions from water surface decreased by 2 to 4-folds from spring to summer and autumn, were independent of the size of the watershed and stream order and did not exhibit sizable (>30 %, regardless of season) variations between day and night. The CH4 concentrations and fluxes increased in the order "spring ≤ summer < autumn" and ranged from 1 to 15 µmol L-1 and 5 to 100 mmol m-2 d-1, respectively. The CO2 concentrations and fluxes (range from 100 to 400 µmol L-1 and 1 to 4 g C m-2 d-1, respectively) were positively correlated with dissolved and particulate organic carbon, total nitrogen and bacterial number of the water column. The CH4 concentrations and fluxes were positively correlated with phosphate and ammonia concentrations. Of the landscape parameters, positive correlations were detected between riparian vegetation biomass and CO2 and CH4 concentrations. Over the six-month open-water period, areal emissions of C (>99.5 % CO2; <0.5 % CH4) from the watersheds of 11 rivers were equal to the total downstream C export in this part of the WSL. Based on correlations between environmental controllers (watershed land cover and the water column parameters), we hypothesize that the fluxes are largely driven by riverine mineralization of terrestrial dissolved and particulate OC, coupled with respiration at the river bottom and riparian sediments. It follows that, under climate warming scenario, most significant changes in GHG regimes of western Siberian rivers located in permafrost-free zone may occur due to changes in the riparian zone vegetation and water coverage of the floodplains.


Assuntos
Carbono , Gases de Efeito Estufa , Carbono/análise , Dióxido de Carbono/análise , Metano/análise , Rios , Estações do Ano , Gases de Efeito Estufa/análise , Água
19.
Environ Sci Pollut Res Int ; 30(37): 87561-87574, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37428320

RESUMO

High-altitude Pyrenean lakes are ecosystems far from local pollution sources, and thus they are particularly sensitive to the atmospheric deposition of metals and metalloids. This study aims to quantify the effect of human activity in 18 lakes located in both side of the France-Spain frontier. Sediment cores were collected in summer 2013, sampled at a 1cm resolution and the concentration of 24 elements was measured by ICP-MS. Statistic and chemometric analysis of the results highlights the influence of the geographical position and lithogenic features of each lake basin on trapping pollutants. More than the 80% of the lakes showed values of enrichment factor (EF) above 2 for at least one of the elements investigated in at least one core interval, which corroborates the existence of historical anthropogenic inputs of elements in the studied area. The results demonstrate the natural origin of As and Ti in Pyrenees, together with the significant anthropogenic inputs of Cd, Pb, Sb and Sn from ancient times. The data set points mining activities as the main historical source of pollution and illustrate the large impact of the industrial revolution. The regional variability could reflect also differential long-range transport, followed by dry or wet deposition.


Assuntos
Monitoramento Ambiental , Lagos , Metais , Poluentes Químicos da Água , Humanos , Altitude , Ecossistema , Monitoramento Ambiental/métodos , Sedimentos Geológicos , Lagos/química , Metaloides/análise , Metais/análise , Metais Pesados/análise , Poluentes Químicos da Água/análise , Espanha , França
20.
Environ Sci Pollut Res Int ; 30(1): 823-836, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35904738

RESUMO

To better understand freezing - thawing cycles operating in peat soils of permafrost landscapes, we experimentally modelled bi-directional freezing and thawing of peat collected from a discontinuous permafrost zone in western Siberia. We measured translocation of microorganisms and changes in porewater chemistry (pH, UV absorbance, dissolved organic carbon (DOC), and major and trace element concentrations) after thawing and two-way freezing of the three sections of 90-cm-long peat core. We demonstrate that bi-directional freezing and thawing of a peat core is capable of strongly modifying the vertical pattern of bacteria, DOC, nutrients, and trace element concentrations. Sizeable enrichment (a factor of 2 to 5) of DOC, macro- (P, K, Ca) and micro-nutrients (Ni, Mn, Co, Rb, B), and some low-mobile trace elements in several horizons of ice and peat porewater after freeze/thaw experiment may stem from physical disintegration of peat particles, leaching of peat constituents, and opening of isolated (non-connected) pores during freezing front migration. However, due to the appearance of multiple maxima of element concentration after a freeze-thaw event, the use of peat ice chemical composition as environmental archive for paleo-reconstructions is unwarranted.


Assuntos
Solo , Oligoelementos , Solo/química , Gelo , Congelamento , Metais , Matéria Orgânica Dissolvida , Bactérias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA