Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Proteome Res ; 22(4): 1201-1212, 2023 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-36961365

RESUMO

Nutritional biomarkers of dairy intake can be affected by both food transformation and the metabolic status of the consumer. To assess these effects, this study investigated the serum volatilome of 14 young (YA) and 14 older (OA) adult men undergoing a 3 week restriction of dairy and fermented foods followed by a randomized crossover acute intake of milk and yogurt. 3,5-Dimethyl-octan-2-one was identified as a potential marker of dairy product intake as its response after both milk and yogurt intake was significantly increased during the postprandial phase but significantly decreased in fasting serum samples of the OA group after the restriction phase. The postprandial response of two metabolites was significantly different for the two dairy products while 19 metabolites were modulated by age. Remarkably, the response of all age-dependent metabolites was higher in the OA than in the YA group after milk or yogurt intake, whereas at the end of the restriction phase, their fasting concentrations were lower in the OA than in the YA group. Among these, p-cresol, a specific marker of colonic protein fermentation, had a significant response in the OA but not the YA group, which may suggest impaired intestinal processing of dietary proteins in the OA group.


Assuntos
Leite , Iogurte , Masculino , Humanos , Idoso , Animais , Estudos Cross-Over , Biomarcadores
2.
Curr Opin Clin Nutr Metab Care ; 26(2): 189-194, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36892966

RESUMO

PURPOSE OF REVIEW: An increase in the plant-based characteristics of the diet is now recommended for human and planetary health. There is growing evidence that plant protein (PP) intake has beneficial effects on cardiometabolic risk. However, proteins are not consumed isolated and the protein package (lipid species, fiber, vitamins, phytochemicals, etc) may contribute, besides the protein effects per se, to explain the beneficial effects associated with PP-rich diets. RECENT FINDINGS: Recent studies have shown the potential of nutrimetabolomics to apprehend the complexity of both the human metabolism and the dietary habits, by providing signatures associated to the consumption of PP-rich diets. Those signatures comprised an important proportion of metabolites that were representative of the protein package, including specific amino acids (branched-chain amino acids and their derivates, glycine, lysine), but also lipid species (lysophosphatidylcholine, phosphatidylcholine, plasmalogens) and polyphenol metabolites (catechin sulfate, conjugated valerolactones and phenolic acids). SUMMARY: Further studies are needed to go deeper in the identification of all metabolites making part of the specific metabolomic signatures, associated to the large range of protein package constituents and their effects on the endogenous metabolism, rather than to the protein fraction itself. The objective is to determine the bioactive metabolites, as well as the modulated metabolic pathways and the mechanisms responsible for the observed effects on cardiometabolic health.


Assuntos
Aminoácidos , Doenças Cardiovasculares , Humanos , Proteínas de Plantas , Metabolômica , Doenças Cardiovasculares/prevenção & controle , Lipídeos
3.
J Nutr ; 153(3): 645-656, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36931747

RESUMO

BACKGROUND: Plant proteins (PPs) have been associated with better cardiovascular health than animal proteins (APs) in epidemiological studies. However, the underlying metabolic mechanisms remain mostly unknown. OBJECTIVES: Using a combination of cutting-edge isotopic methods, we aimed to better characterize the differences in protein and energy metabolisms induced by dietary protein sources (PP compared with AP) in a prudent or western dietary context. METHODS: Male Wistar rats (n = 44, 8 wk old) were fed for 4.5 mo with isoproteic diets differing in their protein isolate sources, either AP (100% milk) or PP (50%:50% pea: wheat) and being normal (NFS) or high (HFS) in sucrose (6% or 15% kcal) and saturated fat (7% or 20% kcal), respectively. We measured body weight and composition, hepatic enzyme activities and lipid content, and plasma metabolites. In the intestine, liver, adipose tissues, and skeletal muscles, we concomitantly assessed the extent of amino acid (AA) trafficking using a 15N natural abundance method, the rates of macronutrient routing to dispensable AA using a 13C natural abundance method, and the metabolic fluxes of protein synthesis (PS) and de novo lipogenesis using a 2H labeling method. Data were analyzed using ANOVA and Mixed models. RESULTS: At the whole-body level, PP limited HFS-induced insulin resistance (-27% in HOMA-IR between HFS groups, P < 0.05). In the liver, PP induced lower lipid content (-17%, P < 0.01) and de novo lipogenesis (-24%, P < 0.05). In the different tissues studied, PP induced higher AA transamination accompanied by higher routings of dietary carbohydrates and lipids toward dispensable AA synthesis by glycolysis and ß-oxidation, resulting in similar tissue PS and protein mass. CONCLUSIONS: In growing rats, compared with AP, a balanced blend of PP similarly supports protein anabolism while better limiting whole-body and tissue metabolic dysregulations through mechanisms related to their less optimal AA profile for direct channeling to PS.


Assuntos
Proteínas de Ervilha , Ratos , Animais , Proteínas de Ervilha/metabolismo , Proteínas do Leite/farmacologia , Proteínas do Leite/metabolismo , Triticum , Sacarose , Dieta Hiperlipídica , Ratos Wistar , Fígado/metabolismo , Aminoácidos/metabolismo , Proteínas Alimentares/metabolismo , Lipídeos
4.
Crit Rev Food Sci Nutr ; 63(32): 11185-11210, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35730212

RESUMO

Impairment of gut function is one of the explanatory mechanisms of health status decline in elderly population. These impairments involve a decline in gut digestive physiology, metabolism and immune status, and associated to that, changes in composition and function of the microbiota it harbors. Continuous deteriorations are generally associated with the development of systemic dysregulations and ultimately pathologies that can worsen the initial health status of individuals. All these alterations observed at the gut level can then constitute a wide range of potential targets for development of nutritional strategies that can impact gut tissue or associated microbiota pattern. This can be key, in a preventive manner, to limit gut functionality decline, or in a curative way to help maintaining optimum nutrients bioavailability in a context on increased requirements, as frequently observed in pathological situations. The aim of this review is to give an overview on the alterations that can occur in the gut during aging and lead to the development of altered function in other tissues and organs, ultimately leading to the development of pathologies. Subsequently is discussed how nutritional strategies that target gut tissue and gut microbiota can help to avoid or delay the occurrence of aging-related pathologies.


Assuntos
Microbioma Gastrointestinal , Doenças Metabólicas , Microbiota , Humanos , Idoso , Envelhecimento/fisiologia , Doenças Metabólicas/prevenção & controle , Microbioma Gastrointestinal/fisiologia , Valor Nutritivo
5.
J Nutr ; 148(1): 40-48, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29378055

RESUMO

Background: Fructose feeding in the context of high energy intake is recognized as being responsible for metabolic dysregulation. However, its consumption in the postabsorptive state might contribute to reducing the use of amino acids (AAs) as energy substrates and thus spare nitrogen resources, which could be beneficial during catabolic states. Objective: We hypothesized that fructose feeding during a catabolic situation corresponding to protein-energy restriction (PER) in older rats would reduce AA utilization for energy purposes, thus slowing down the loss of body weight (BW) and improving body composition. Methods: For 45 d, 22-mo-old male Wistar rats (average weight: 716 g) were fed a control ration (13% protein) either at normal (20 g/d), restricted (PER: 10 g/d), or at PER levels supplemented with glucose (3 g/d) or fructose (3 g/d) and then studied in the postabsorptive state. We measured BW, body composition, and enzyme activities and metabolite concentrations related to glucose, fructose, and AA metabolism. Results: Both glucose and fructose feeding reduced PER-induced loss of BW and lean mass (-27% compared with PER), but only fructose reduced the loss of fat mass (-28% compared with PER). Fructose feeding prevented the PER-induced loss of muscle and intestinal mass. Fructose feeding also reduced circulating branched-chain AA concentrations by 50% (compared with PER) and increased those of alanine (+65% compared with PER). A reduction in hepatic enzymes related to AA catabolism was also observed during fructose feeding (compared with PER), whereas glycogen concentrations were enhanced in both intestine (+300%) and muscle (+21%). Conclusions: We showed that in PER older rats, fructose feeding improved body composition and the weight of several organs by reducing AA catabolism and utilization for energy production and liver autophagy potential. This could be advantageous in sparing body proteins, particularly during catabolic states, such as those related to malnutrition during aging.


Assuntos
Composição Corporal , Dieta com Restrição de Proteínas , Frutose/administração & dosagem , Nitrogênio/metabolismo , Alanina/sangue , Alanina Desidrogenase/sangue , Aminoácidos de Cadeia Ramificada/sangue , Animais , Glicemia/metabolismo , Glicogênio/metabolismo , Insulina/sangue , Ácido Láctico/sangue , Leucina Desidrogenase/sangue , Fígado/metabolismo , Masculino , Ratos , Ratos Wistar , Ureia/sangue
6.
Br J Nutr ; 119(9): 981-991, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29502540

RESUMO

Little is known about how diet-induced obesity and insulin resistance affect protein and amino acid (AA) metabolism in tissues. The natural relative abundances of the heavy stable isotopes of C (δ 13C) and N (δ 15N) in tissue proteins offer novel and promising biomarkers of AA metabolism. They, respectively, reflect the use of dietary macronutrients for tissue AA synthesis and the relative metabolic use of tissue AA for oxidation v. protein synthesis. In this study, δ 13C and δ 15N were measured in the proteins of various tissues in young adult rats exposed perinatally and/or fed after weaning with a normal- or a high-fat (HF) diet, the aim being to characterise HF-induced tissue-specific changes in AA metabolism. HF feeding was shown to increase the routing of dietary fat to all tissue proteins via non-indispensable AA synthesis, but did not affect AA allocation between catabolic and anabolic processes in most tissues. However, the proportion of AA directed towards oxidation rather than protein synthesis was increased in the small intestine and decreased in the tibialis anterior muscle and adipose tissue. In adipose tissue, the AA reallocation was observed in the case of perinatal or post-weaning exposure to HF, whereas in the small intestine and tibialis anterior muscle the AA reallocation was only observed after HF exposure that covered both the perinatal and post-weaning periods. In conclusion, HF exposure induced an early reorganisation of AA metabolism involving tissue-specific effects, and in particular a decrease in the relative allocation of AA to oxidation in several peripheral tissues.


Assuntos
Aminoácidos/metabolismo , Carbono/metabolismo , Dieta Hiperlipídica/efeitos adversos , Nitrogênio/metabolismo , Ração Animal/análise , Fenômenos Fisiológicos da Nutrição Animal , Animais , Carbono/química , Isótopos de Carbono , Dieta/veterinária , Nitrogênio/química , Isótopos de Nitrogênio , Ratos , Ratos Sprague-Dawley
7.
Eur J Nutr ; 57(1): 119-135, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27568059

RESUMO

PURPOSE: In the present study, we aimed to metabolically characterize the postprandial adaptations of the major tissues involved in energy, lipids and amino acids metabolisms in mini-pigs. METHOD: Mini-pigs were fed on high-fat-high-sucrose (HFHS) diet for 2 months and several tissues explored for metabolic analyses. Further, the urine metabolome was followed over the time to picture the metabolic adaptations occurring at the whole body level following overfeeding. RESULTS: After 2 months of HFHS consumption, mini-pigs displayed an obese phenotype characterized by high circulating insulin, triglycerides and cholesterol levels. At the tissue level, a general (muscle, adipose tissue, intestine) reduction in the capacity to phosphorylate glucose was observed. This was also supported by the enhanced hepatic gluconeogenesis potential, despite the concomitant normoglycaemia, suggesting that the high circulating insulin levels would be enough to maintain glucose homoeostasis. The HFHS feeding also resulted in a reduced capacity of two other pathways: the de novo lipogenesis, and the branched-chain amino acids transamination. Finally, the follow-up of the urine metabolome over the time allowed determining breaking points in the metabolic trajectory of the animals. CONCLUSIONS: Several features confirmed the pertinence of the animal model, including increased body weight, adiposity and porcine obesity index. At the metabolic level, we observed a perturbed glucose and amino acid metabolism, known to be related to the onset of the obesity. The urine metabolome analyses revealed several metabolic pathways potentially involved in the obesity onset, including TCA (citrate, pantothenic acid), amino acids catabolism (cysteine, threonine, leucine).


Assuntos
Adaptação Fisiológica/fisiologia , Dieta Hiperlipídica , Sacarose Alimentar/administração & dosagem , Porco Miniatura , Aminoácidos/metabolismo , Animais , Glicemia/metabolismo , Colesterol/sangue , Dieta Hiperlipídica/efeitos adversos , Sacarose Alimentar/efeitos adversos , Metabolismo Energético/fisiologia , Feminino , Gluconeogênese , Glucose/metabolismo , Homeostase , Hiperfagia , Insulina/sangue , Metabolismo dos Lipídeos/fisiologia , Fígado/metabolismo , Metabolômica , Fosforilação , Período Pós-Prandial/fisiologia , Suínos , Triglicerídeos/sangue , Urina/química
8.
Nutr Res Rev ; 30(2): 191-207, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28511733

RESUMO

In our societies, the proportions of elderly people and of obese individuals are increasing. Both factors are associated with high health-related costs. During obesity, many authors suggest that it is a high chronic intake of added sugars (HCIAS) that triggers the shift towards pathology. However, the majority of studies were performed in young subjects and only a few were interested in the interaction with the ageing process. Our purpose was to discuss the metabolic effects of HCIAS, compare with the effects of ageing, and evaluate how deleterious the combined action of HCIAS and ageing could be. This effect of HCIAS seems mediated by fructose, targeting the liver first, which may lead to all subsequent metabolic alterations. The first basic alterations induced by fructose are increased oxidative stress, protein glycation, inflammation, dyslipidaemia and insulin resistance. These alterations are also present during the ageing process, and are closely related to each other, one leading to the other. These basic alterations are also involved in more complex syndromes, which are also favoured by HCIAS, and present during ageing. These include non-alcoholic fatty liver disease, hypertension, neurodegenerative diseases, sarcopenia and osteoporosis. Cumulative effects of ageing and HCIAS have been seldom tested and may not always be strictly additive. Data also suggest that some of the metabolic alterations that are more prevalent during ageing could be related more with nutritional habits than to intrinsic ageing. In conclusion, it is clear that HCIAS interacts with the ageing process, accelerates the accumulation of metabolic alterations, and that it should be avoided.


Assuntos
Envelhecimento/fisiologia , Açúcares da Dieta/administração & dosagem , Açúcares da Dieta/efeitos adversos , Animais , Dislipidemias/epidemiologia , Dislipidemias/etiologia , Frutose/administração & dosagem , Frutose/efeitos adversos , Frutose/metabolismo , Glicosilação/efeitos dos fármacos , Humanos , Inflamação/epidemiologia , Inflamação/etiologia , Resistência à Insulina , Fígado/efeitos dos fármacos , Fígado/fisiopatologia , Hepatopatia Gordurosa não Alcoólica/epidemiologia , Hepatopatia Gordurosa não Alcoólica/etiologia , Obesidade/epidemiologia , Obesidade/fisiopatologia , Estresse Oxidativo/efeitos dos fármacos
9.
J Proteome Res ; 15(6): 1862-74, 2016 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-27115730

RESUMO

We aimed to determine the time-course of metabolic changes related to the early onset of insulin resistance (IR), trying to evidence breaking points preceding the appearance of the clinical IR phenotype. The model chosen was the fructose (FRU)-fed rat compared to controls fed with starch. We focused on the hepatic metabolism after 0, 5, 12, 30, or 45 days of FRU intake. The hepatic molecular metabolic changes followed indeed a multistep trajectory rather than a continuous progression. After 5 d of FRU feeding, we observed deep modifications in the hepatic metabolism, driven by the induction of lipogenic genes and important glycogen depletion. Thereafter, a steady-state period between days 12 and 30 was observed, characterized by a switch from carbohydrate to lipid utilization at the hepatic level and increased insulin levels aiming at alleviating lipid accumulation and hyperglycemia, respectively. The FRU-fed animals were only clinically IR at day 45 (altered homeostasis model assessment-estimated insulin resistance and muscle glucose transport). Furthermore, the urine metabolome revealed even earlier metabolic trajectory changes that precede the hepatic alterations. We identified several candidate metabolites linked to the tryptophan-nicotinamide metabolism and the installation of fasting hyperglycemia that suggest a role of this metabolic pathway on the development of the IR phenotype in the FRU-fed rats.


Assuntos
Frutose/farmacologia , Resistência à Insulina , Metabolismo , Animais , Metabolismo dos Carboidratos , Frutose/administração & dosagem , Hiperglicemia/metabolismo , Metabolismo dos Lipídeos , Fígado/metabolismo , Metabolômica , Niacinamida/metabolismo , Ratos , Fatores de Tempo , Triptofano/metabolismo
10.
J Nutr ; 145(5): 923-30, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25809681

RESUMO

BACKGROUND: Today, high chronic intake of added sugars is frequent, which leads to inflammation, oxidative stress, and insulin resistance. These 3 factors could reduce meal-induced stimulation of muscle protein synthesis and thus aggravate the age-related loss of muscle mass (sarcopenia). OBJECTIVES: Our aims were to determine if added sugars could accelerate sarcopenia and to assess the capacity of antioxidants and anti-inflammatory agents to prevent this. METHODS: For 5 mo, 16-mo-old male rats were starch fed (13% sucrose and 49% wheat starch diet) or sucrose fed (62% sucrose and 0% wheat starch diet) with or without rutin (5 g/kg diet), vitamin E (4 times), vitamin A (2 times), vitamin D (5 times), selenium (10 times), and zinc (+44%) (R) supplementation. We measured the evolution of body composition and inflammation, plasma insulin-like growth factor 1 (IGF-I) concentration and total antioxidant status, insulin sensitivity (oral-glucose-tolerance test), muscle weight, superoxide dismutase activity, glutathione concentration, and in vivo protein synthesis rates. RESULTS: Sucrose-fed rats lost significantly more lean body mass (-8.1% vs. -5.4%, respectively) and retained more fat mass (+0.2% vs. -33%, respectively) than starch-fed rats. Final muscle mass was 11% higher in starch-fed rats than in sucrose-fed rats. Sucrose had little effect on inflammation, oxidative stress, and plasma IGF-I concentration but reduced the insulin sensitivity index (divided by 2). Meal-induced stimulation of muscle protein synthesis was significantly lower in sucrose-fed rats (+7.3%) than in starch-fed rats (+22%). R supplementation slightly but significantly reduced oxidative stress and increased muscle protein concentration (+4%) but did not restore postprandial stimulation of muscle protein synthesis. CONCLUSIONS: High chronic sucrose intake accelerates sarcopenia in older male rats through an alteration of postprandial stimulation of muscle protein synthesis. This effect could be explained by a decrease of insulin sensitivity rather than by changes in plasma IGF-I, inflammation, and/or oxidative stress.


Assuntos
Envelhecimento , Sacarose Alimentar/efeitos adversos , Regulação da Expressão Gênica no Desenvolvimento , Resistência à Insulina , Proteínas Musculares/biossíntese , Músculo Esquelético/metabolismo , Sarcopenia/etiologia , Adiposidade , Animais , Anti-Inflamatórios não Esteroides/uso terapêutico , Antioxidantes/uso terapêutico , Composição Corporal , Sacarose Alimentar/antagonistas & inibidores , Suplementos Nutricionais , Glutationa/metabolismo , Fator de Crescimento Insulin-Like I/análise , Masculino , Músculo Esquelético/imunologia , Músculo Esquelético/patologia , Estresse Oxidativo , Período Pós-Prandial , Distribuição Aleatória , Ratos Wistar , Sarcopenia/imunologia , Sarcopenia/metabolismo , Sarcopenia/prevenção & controle
11.
Nutr Res Rev ; 27(1): 21-47, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24896238

RESUMO

The glucokinase (GK) enzyme (EC 2.7.1.1.) is essential for the use of dietary glucose because it is the first enzyme to phosphorylate glucose in excess in different key tissues such as the pancreas and liver. The objective of the present review is not to fully describe the biochemical characteristics and the genetics of this enzyme but to detail its nutritional regulation in different vertebrates from fish to human. Indeed, the present review will describe the existence of the GK enzyme in different animal species that have naturally different levels of carbohydrate in their diets. Thus, some studies have been performed to analyse the nutritional regulation of the GK enzyme in humans and rodents (having high levels of dietary carbohydrates in their diets), in the chicken (moderate level of carbohydrates in its diet) and rainbow trout (no carbohydrate intake in its diet). All these data illustrate the nutritional importance of the GK enzyme irrespective of feeding habits, even in animals known to poorly use dietary carbohydrates (carnivorous species).


Assuntos
Dieta , Carboidratos da Dieta/metabolismo , Comportamento Alimentar/fisiologia , Glucoquinase/metabolismo , Glucose/metabolismo , Vertebrados/fisiologia , Animais , Humanos
12.
Artigo em Inglês | MEDLINE | ID: mdl-23010243

RESUMO

To assess the hypothesis that an acute dietary fatty acid (FA) supply may improve glucose tolerance in rainbow trout, we orally administered fish with fish oil (FO; 10mL.kg(-1), one time), which were then subjected to a glucose tolerance test and sampled 6h after injection. Parameters related to glucose and lipid metabolism were then assessed. The results suggest that when both nutrients were administered at the same time, an increased potential for lipogenesis occurred concomitantly with a lower level of glycaemia. In a second experiment we administered intraperitoneally a single FA present in the FO mixture such as oleic acid (60 or 300µg.kg(-1)) whereas octanoic acid (60 or 300µg.kg(-1)) was used as negative control (absent from the FO). However, the effects of both FA were similar in reducing the potential of lipid synthesis and oxidation, and in enhancing the potential of glucose synthesis and glycogenesis. Differences found between FO and single FA administration show that response to FA was dependent on the treatment (mixture vs. single FA) but also comply with the idea that an interaction between FA and glucose rather than FA alone are in the origin of the results reported. The administration of individual FA such as oleic and octanoic acid failed in enhancing lipogenesis and reducing plasma glucose levels and thus in explaining results obtained with FO. However, results provide evidence that FA even provided at a low dose play a key role in the regulation of several putative components of a FA sensing system present in rainbow trout liver.


Assuntos
Gorduras na Dieta/farmacologia , Regulação Enzimológica da Expressão Gênica , Glucose/metabolismo , Oncorhynchus mykiss/metabolismo , ATP Citrato (pro-S)-Liase/genética , ATP Citrato (pro-S)-Liase/metabolismo , Animais , Glicemia/efeitos dos fármacos , Glicemia/metabolismo , Caprilatos/farmacologia , Gorduras na Dieta/administração & dosagem , Quimioterapia Combinada/métodos , Ativação Enzimática , Ácido Graxo Sintases/metabolismo , Ácidos Graxos/farmacologia , Óleos de Peixe/farmacologia , Proteínas de Peixes/análise , Proteínas de Peixes/metabolismo , Glucose/farmacologia , Teste de Tolerância a Glucose/métodos , Glucose-6-Fosfatase/genética , Glucose-6-Fosfatase/metabolismo , Glucosefosfato Desidrogenase/genética , Glucosefosfato Desidrogenase/metabolismo , Metabolismo dos Lipídeos , Lipogênese , Fígado/efeitos dos fármacos , Fígado/enzimologia , Fígado/metabolismo , Ácido Oleico/farmacologia , Oncorhynchus mykiss/genética , Oxirredução , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais
13.
J Physiol Biochem ; 79(2): 397-413, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36574151

RESUMO

Obesity is a major contributor to the silent and progressive development of type 2 diabetes (T2D) whose prevention could be improved if individuals at risk were identified earlier. Our aim is to identify early phenotypes that precede T2D in diet-induced obese minipigs. We fed four groups of minipigs (n = 5-10) either normal-fat or high-fat high-sugar diet during 2, 4, or 6 months. Morphometric features were recorded, and metabolomics and clinical parameters were assessed on fasting plasma samples. Multivariate statistical analysis on 46 morphometrical and clinical parameters allowed to differentiate 4 distinct phenotypes: NFC (control group) and three others (HF2M, HF4M, HF6M) corresponding to the different stages of the obesity progression. Compared to NFC, we observed a rapid progression of body weight and fat mass (4-, 7-, and tenfold) in obese phenotypes. Insulin resistance (IR; 2.5-fold increase of HOMA-IR) and mild dyslipidemia (1.2- and twofold increase in total cholesterol and HDL) were already present in the HF2M and remained stable in HF4M and HF6M. Plasma metabolome revealed subtle changes of 23 metabolites among the obese groups, including a progressive switch in energy metabolism from amino acids to lipids, and a transient increase in de novo lipogenesis and TCA-related metabolites in HF2M. Low anti-oxidative capacities and anti-inflammatory response metabolites were found in the HF4M, and a perturbed hexose metabolism was observed in HF6M. Overall, we show that IR and progressively obese minipigs reveal phenotype-specific metabolomic signatures for which some of the identified metabolites could be considered as potential biomarkers of early progression to TD2.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Animais , Suínos , Insulina/metabolismo , Porco Miniatura/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Obesidade/metabolismo , Metabolômica
14.
Curr Dev Nutr ; 7(12): 102038, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38162999

RESUMO

Background: The effects of supplementation with L-arginine (L-arg), the precursor of nitric oxide (NO), on vascular and cardiometabolic health have largely been explored. Whether other mechanisms of the action of L-arg exist remains unknown, as arginine metabolism is complicated. Objective: We aimed to characterize the effect of low dose L-arg supplementation on overall human metabolism both in a fasting state and in response to an allostatic stress. Methods: In a randomized, double-blind, crossover study, 32 healthy overweight adults (mean age 45 y) with cardiometabolic risk (fasting plasma triglycerides >150 mg/dL; waist circumference >94 cm [male] or >80 cm [female]) were treated with 1.5 g sustained-release L-arg 3 times/d (4.5 g/d) or placebo for 4 wk. On the last day of treatment, volunteers consumed a high-fat meal challenge (900 kcal, 80% as fat, 13% as carbohydrate, and 7% as protein). Plasma was collected at fasting, 2, 4, and 6 h after the challenge, and the metabolome was analyzed by high-resolution liquid chromatography-mass spectrometry. Metabolic profiles were analyzed using linear mixed models-principal component analysis. Results: The challenge meal explained most of the changes in the metabolome. The overall effect of L-arg supplementation significantly explained 0.5% of the total variance, irrespective of the response to the challenge meal (P < 0.05). Among the metabolites that explain most of the L-arg effect, we found many amino acids, including branched-chain amino acids, that were decreased by L-arg supplementation. L-arg also decreased trimethylamine N-oxide (TMAO). Other changes suggest that L-arg increased methyl demand. Conclusions: Analysis of the effect of 4 wk of L-arg supplementation on the metabolome reveals important effects on methyl balance and gut microbiota activity, such as a decrease in TMAO. Further studies are needed to investigate those mechanisms and the implications of these changes for long-term health.This trial was registered at clinicaltrials.gov as NCT02354794.

15.
Am J Physiol Regul Integr Comp Physiol ; 302(11): R1340-50, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22496361

RESUMO

Enhanced lipid levels inhibit food intake in fish but no studies have characterized the possible mechanisms involved. We hypothesize that the presence of fatty acid (FA)-sensing mechanisms could be related to the control of food intake. Accordingly, we evaluated in the hypothalamus, hindbrain, and Brockmann bodies (BB) of rainbow trout changes in parameters related to fatty acid metabolism, transport of FA, nuclear receptors, and transcription factors involved in lipid metabolism, and components of the K(ATP) channel after intraperitoneal administration of different doses of oleic acid (long-chain fatty acid, LCFA) or octanoic acid (medium-chain fatty acid, MCFA). The increase in circulating LCFA or MCFA levels elicited an inhibition in food intake and induced in the hypothalamus a response compatible with fatty acid sensing in which fatty acid metabolism, binding to cluster of differentiation 36 (CD36), and mitochondrial activity are apparently involved, which is similar to that suggested in mammals except for the apparent capacity of rainbow trout to detect changes in MCFA levels. Changes in those hypothalamic pathways can be related to the control of food intake, since food intake was inhibited when FA metabolism was perturbed (using fatty acid synthase or acetyl-CoA carboxylase inhibitors) and changes in mRNA levels of specific neuropeptides such as neuropeptide Y and proopiomelancortin were also noticed. This response seems to be exclusive for the hypothalamus, since the other center controlling food intake (hindbrain) was unaffected by treatments. The results obtained in BB suggest that at least two of the components of a putative fatty acid-sensing system (based on fatty acid metabolism and binding to CD36) could be present. Therefore, the present study provides, for the first time in fish, evidence for a specific role for FA (MCFA and LCFA) as metabolic signals in hypothalamus and BB, where the detection of those FA can be associated with the control of food intake and hormone release.


Assuntos
Regulação do Apetite/efeitos dos fármacos , Glicemia/metabolismo , Ácidos Graxos/metabolismo , Hipotálamo/metabolismo , Oncorhynchus mykiss/metabolismo , Rombencéfalo/metabolismo , Animais , Regulação do Apetite/fisiologia , Caprilatos/farmacologia , Hipotálamo/fisiologia , Ácido Oleico/farmacologia , Oncorhynchus mykiss/fisiologia , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Rombencéfalo/fisiologia
16.
J Exp Biol ; 215(Pt 1): 169-78, 2012 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-22162865

RESUMO

This study was designed to assess the effects of dietary fat levels on glucose homeostasis in rainbow trout under prolonged hyperglycaemia induced by high carbohydrate intake. Trout were fed identical amounts of one of two iso-energetic diets containing either a low (LFD, 3%) or a high fat level (HFD, 20%) and similar amounts of digestible carbohydrates (26-30%) for 14 days. While a single high fat meal reduced glycaemia compared with a low fat meal, the consumption of a high fat diet for 14 days resulted in prolonged hypergylcaemia and reduced plasma glucose clearance in response to an exogenous glucose or insulin challenge. The hyperglycaemic phenotype in trout was characterised by a reduction of the activities of lipogenic and glucose phosphorylating enzymes with a concomitant stimulation of enzymes involved in glucose production in the liver and reduced glycogen levels in the white muscle. Impaired glucose tolerance (IGT) was further associated with a significant reduction of insulin receptor substrate 1 (IRS1) protein content in muscle, and with a poor response of HFD fed fish to an exogenous insulin load, suggestive of impaired insulin signalling in trout fed with a HFD. To our knowledge, this is the first study showing that a teleost can also develop a high fat-induced IGT, characterised by persistent hyperglycaemia and reduced insulin sensitivity, established symptoms of IGT and the prediabetic insulin-resistant state in mammals. Our results also provide evidence that persistent hyperglycaemia after a high carbohydrate meal stems from a metabolic interaction between dietary macronutrients rather than from high carbohydrate intake alone.


Assuntos
Dieta Hiperlipídica , Glucose/metabolismo , Hiperglicemia/metabolismo , Oncorhynchus mykiss/metabolismo , Animais , Glicemia/metabolismo , Carboidratos da Dieta/metabolismo , Gorduras na Dieta/metabolismo , Insulina/metabolismo , Metabolismo dos Lipídeos
17.
J Exp Biol ; 215(Pt 15): 2567-78, 2012 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-22786633

RESUMO

Previous studies in two rainbow trout lines divergently selected for lean (L) or fat (F) muscle suggested that they differ in their ability to metabolise glucose. In this context, we investigated whether genetic selection for high muscle fat content led to a better capacity to metabolise dietary carbohydrates. Juvenile trout from the two lines were fed diets with or without gelatinised starch (17.1%) for 10 weeks, after which blood, liver, muscle and adipose tissues were sampled. Growth rate, feed efficiency and protein utilisation were lower in the F line than in the L line. In both lines, intake of carbohydrates was associated with a moderate post-prandial hyperglycaemia, a protein sparing effect, an enhancement of nutrient (TOR-S6) signalling cascade and a decrease of energy-sensing enzyme (AMPK). Gene expression of hepatic glycolytic enzymes was higher in the F line fed carbohydrates compared with the L line, but concurrently transcripts for the gluconeogenic enzymes was also higher in the F line, possibly impairing glucose homeostasis. However, the F line showed a higher gene expression of hepatic enzymes involved in lipogenesis and fatty acid bioconversion, in particular with an increased dietary carbohydrate intake. Enhanced lipogenic potential coupled with higher liver glycogen content in the F line suggests better glucose storage ability than the L line. Overall, the present study demonstrates the changes in hepatic intermediary metabolism resulting from genetic selection for high muscle fat content and dietary carbohydrate intake without, however, any interaction for an improved growth or glucose utilisation in the peripheral tissues.


Assuntos
Tecido Adiposo/metabolismo , Carboidratos da Dieta/farmacologia , Músculos/metabolismo , Oncorhynchus mykiss/metabolismo , Adenilato Quinase/genética , Adenilato Quinase/metabolismo , Tecido Adiposo/efeitos dos fármacos , Animais , Western Blotting , Ácidos Graxos/metabolismo , Comportamento Alimentar/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Gluconeogênese/efeitos dos fármacos , Gluconeogênese/genética , Glicólise/efeitos dos fármacos , Glicólise/genética , Lipogênese/efeitos dos fármacos , Lipogênese/genética , Fígado/efeitos dos fármacos , Fígado/enzimologia , Músculos/efeitos dos fármacos , Oncorhynchus mykiss/sangue , Oncorhynchus mykiss/genética , Oncorhynchus mykiss/crescimento & desenvolvimento , Oxirredução/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Período Pós-Prandial/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Quinases S6 Ribossômicas/genética , Proteínas Quinases S6 Ribossômicas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
18.
Adv Exp Med Biol ; 771: 319-39, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23393688

RESUMO

Insulin resistance, the most important pathophysiological feature in various prediabetic and diabetic states is partly related to impaired glucose-stimulated insulin secretion and insulin modulation of pancreatic beta cell with peripheral impaired insulin response. This chapter concentrates on aspects of potential new strategies in the treatment of the disease going from nutritional preventive approaches towards currently utilized drugs for treatment that target the pancreatic beta cells with potentiation of glucose-stimulated insulin secretion.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/prevenção & controle , Resistência à Insulina/fisiologia , Estado Pré-Diabético/dietoterapia , Estado Pré-Diabético/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Dieta para Diabéticos , Glucose/metabolismo , Humanos , Hipoglicemiantes/química , Hipoglicemiantes/uso terapêutico
19.
Nutrients ; 14(3)2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35276829

RESUMO

This review focuses on the added value provided by a research strategy applying metabolomics analyses to assess phenotypic flexibility in response to different nutritional challenge tests in the framework of metabolic clinical studies. We discuss findings related to the Oral Glucose Tolerance Test (OGTT) and to mixed meals with varying fat contents and food matrix complexities. Overall, the use of challenge tests combined with metabolomics revealed subtle metabolic dysregulations exacerbated during the postprandial period when comparing healthy and at cardiometabolic risk subjects. In healthy subjects, consistent postprandial metabolic shifts driven by insulin action were reported (e.g., a switch from lipid to glucose oxidation for energy fueling) with similarities between OGTT and mixed meals, especially during the first hours following meal ingestion while differences appeared in a wider timeframe. In populations with expected reduced phenotypic flexibility, often associated with increased cardiometabolic risk, a blunted response on most key postprandial pathways was reported. We also discuss the most suitable statistical tools to analyze the dynamic alterations of the postprandial metabolome while accounting for complexity in study designs and data structure. Overall, the in-depth characterization of the postprandial metabolism and associated phenotypic flexibility appears highly promising for a better understanding of the onset of cardiometabolic diseases.


Assuntos
Doenças Cardiovasculares , Período Pós-Prandial , Doenças Cardiovasculares/etiologia , Teste de Tolerância a Glucose , Humanos , Refeições , Metaboloma , Período Pós-Prandial/fisiologia
20.
PLoS One ; 17(11): e0277458, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36445891

RESUMO

This study explored plasma biomarkers and metabolic pathways underlying feed efficiency measured as residual feed intake (RFI) in Charolais heifers. A total of 48 RFI extreme individuals (High-RFI, n = 24; Low-RFI, n = 24) were selected from a population of 142 heifers for classical plasma metabolite and hormone quantification and plasma metabolomic profiling through untargeted LC-MS. Most efficient heifers (Low-RFI) had greater (P = 0.03) plasma concentrations of IGF-1 and tended to have (P = 0.06) a lower back fat depth compared to least efficient heifers. However, no changes were noted (P ≥ 0.10) for plasma concentrations of glucose, insulin, non-esterified fatty acids, ß-hydroxybutyrate and urea. The plasma metabolomic dataset comprised 3,457 ions with none significantly differing between RFI classes after false discovery rate correction (FDR > 0.10). Among the 101 ions having a raw P < 0.05 for the RFI effect, 13 were putatively annotated by using internal databases and 6 compounds were further confirmed with standards. Metabolic pathway analysis from these 6 confirmed compounds revealed that the branched chain amino acid metabolism was significantly (FDR < 0.05) impacted by the RFI classes. Our results confirmed for the first time in beef heifers previous findings obtained in male beef cattle and pointing to changes in branched-chain amino acids metabolism along with that of body composition as biological mechanisms related to RFI. Further studies are warranted to ascertain whether there is a cause-and-effect relationship between these mechanisms and RFI.


Assuntos
Aminoácidos de Cadeia Ramificada , Plasma , Masculino , Bovinos , Animais , Feminino , Metabolômica , Ingestão de Alimentos , Progressão da Doença
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA