Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Assunto principal
Ano de publicação
Tipo de documento
Revista
País de afiliação
Intervalo de ano de publicação
1.
Elife ; 112022 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-36476338

RESUMO

Mice are the most commonly used model animals for itch research and for development of anti-itch drugs. Most laboratories manually quantify mouse scratching behavior to assess itch intensity. This process is labor-intensive and limits large-scale genetic or drug screenings. In this study, we developed a new system, Scratch-AID (Automatic Itch Detection), which could automatically identify and quantify mouse scratching behavior with high accuracy. Our system included a custom-designed videotaping box to ensure high-quality and replicable mouse behavior recording and a convolutional recurrent neural network trained with frame-labeled mouse scratching behavior videos, induced by nape injection of chloroquine. The best trained network achieved 97.6% recall and 96.9% precision on previously unseen test videos. Remarkably, Scratch-AID could reliably identify scratching behavior in other major mouse itch models, including the acute cheek model, the histaminergic model, and a chronic itch model. Moreover, our system detected significant differences in scratching behavior between control and mice treated with an anti-itch drug. Taken together, we have established a novel deep learning-based system that could replace manual quantification for mouse scratching behavior in different itch models and for drug screening.


Assuntos
Aprendizado Profundo , Camundongos , Animais , Prurido/induzido quimicamente , Comportamento Animal , Injeções , Cloroquina/farmacologia , Modelos Animais de Doenças
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA