Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Am Chem Soc ; 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39087940

RESUMO

Amide alkylation is a fundamental process in organic chemistry. However, the low nucleophilicity of amides means that divergent coupling with alkyl electrophiles is often not achievable. To circumvent this reactivity challenge, individual amine synthesis followed by amidation with standard coupling agents is generally required. Herein, we demonstrate a radical solution to this challenge by using an amine-borane complex and copper catalysis under oxidative conditions. While borohydride reagents are generally used as reducing agents in ionic chemistry, their conversion into amine-ligated boryl radicals diverts their reactivity toward halogen-atom transfer. This enables the conversion of alkyl halides into the corresponding alkyl radicals for amide functionalization via copper catalysis. The process is applicable to the N-alkylation of primary amides employing unactivated alkyl iodides and bromides, and it was also showcased in the late-state functionalization of both complex amide- and halide-containing drugs.

2.
Molecules ; 29(10)2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38792028

RESUMO

Within the realm of organic synthesis, photocatalysis has blossomed since the beginning of the last decade. A plethora of classical reactivities, such as selective oxidation of alcohol and amines, redox radical formation of reactive species in situ, and indirect activation of an organic substrate for cycloaddition by EnT, have been revised in a milder and more sustainable fashion via photocatalysis. However, even though the spark of creativity leads scientists to explore new reactions and reactivities, the urgency of replacing the toxic and critical metals that are involved as catalysts has encouraged chemists to find alternatives in the branch of science called organocatalysis. Unfortunately, replacing metal catalysts with organic analogues can be too expensive sometimes; however, this drawback can be solved by the reutilization of the catalyst if it is heterogeneous. The aim of this review is to present the recent works in the field of heterogeneous photocatalysis, applied to organic synthesis, enabled by continuous flow. In detail, among the heterogeneous catalysts, g-CN, polymeric photoactive materials, and supported molecular catalysts have been discussed within their specific sections, rather than focusing on the types of reactions.

3.
Molecules ; 28(4)2023 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-36838518

RESUMO

Novel polyhydroxylated ammonium, imidazolium, and pyridinium salt organocatalysts were prepared through N-alkylation sequences using glycidol as the key precursor. The most active pyridinium iodide catalyst effectively promoted the carbonation of a set of terminal epoxides (80 to >95% yields) at a low catalyst loading (5 mol%), ambient pressure of CO2, and moderate temperature (75 °C) in batch operations, also demonstrating high recyclability and simple downstream separation from the reaction mixture. Moving from batch to segmented flow conditions with the operation of thermostated (75 °C) and pressurized (8.5 atm) home-made reactors significantly reduced the process time (from hours to seconds), increasing the process productivity up to 20.1 mmol(product) h-1 mmol(cat)-1, a value ~17 times higher than that in batch mode.


Assuntos
Compostos de Amônio , Dióxido de Carbono , Carbonatos , Catálise
4.
J Org Chem ; 87(12): 7826-7837, 2022 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-35621232

RESUMO

Indole-decorated glycine derivatives are prepared through an environmentally benign cross-dehydrogenative coupling between N-aryl glycine analogues and indoles (yield of ≤81%). Merging heterogeneous organocatalysis and photocatalysis, C-H functionalization has been achieved by selective C-2 oxidation of N-aryl glycines to afford the electrophilic imine followed by Friedel-Crafts alkylation with indole. The sustainability of the process has been taken into account in the reaction design through the implementation of a metal-free recyclable heterogeneous photocatalyst and a green reaction medium. Scale-up of the benchmark reaction (gram scale, yield of 69%) and recycling experiments (over seven runs without a loss of efficiency) have been performed to prove the robustness of the protocol. Finally, mechanistic studies were conducted employing electron paramagnetic resonance spectroscopy to unveil the roles of the photocatalyst and oxygen in the formation of odd-electron species.


Assuntos
Glicina , Indóis , Aminoácidos , Catálise , Glicina/química , Grafite , Indóis/química , Compostos de Nitrogênio
5.
Org Lett ; 25(26): 4862-4867, 2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37348204

RESUMO

Herein, we present the α-selective Giese reaction between pyranosyl/furanosyl bromides and dehydroalanine analogues, which provides access to a library of highly valuable α-C-glycosyl alanines. The key C-glycosyl radical is generated through photocatalysis by either the new generation copper(I) complex [(DPEPhos)(bcp)Cu]PF6 or [Ru(bpy)3](BF4)2. The reactions proceed smoothly, affording the desired α-C-glycosyl alanines in up to 99% yield when diethyl 1,4-dihydro-2,6-dimethyl-3,5-pyridinedicarboxylate [Hantzsch ester (HE)] is used as an additive. N,N-Diisopropylethylamine (DIPEA) has been selected as a reductant in both protocols. A mechanistic study by means of transient absorption spectroscopy unveils a halogen-atom transfer (XAT) process in C-glycosyl radical formation.


Assuntos
Alanina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA