Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(49): e2200256119, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36442088

RESUMO

Visual acuity is commonly assumed to be determined by the eye optics and spatial sampling in the retina. Unlike a camera, however, the eyes are never stationary during the acquisition of visual information; a jittery motion known as ocular drift incessantly displaces stimuli over many photoreceptors. Previous studies have shown that acuity is impaired in the absence of retinal image motion caused by eye drift. However, the relation between individual drift characteristics and acuity remains unknown. Here, we show that a) healthy emmetropes exhibit a large variability in their amount of drift and that b) these differences profoundly affect the structure of spatiotemporal signals to the retina. We further show that c) the spectral distribution of the resulting luminance modulations strongly correlates with individual visual acuity and that d) natural intertrial fluctuations in the amount of drift modulate acuity. As a consequence, in healthy emmetropes, acuity can be predicted from the motor behavior elicited by a simple fixation task, without directly measuring it. These results shed new light on how oculomotor behavior contributes to fine spatial vision.


Assuntos
Face , Técnicas Histológicas , Acuidade Visual , Retina , Movimento (Física)
2.
Appl Opt ; 63(3): 730-742, 2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38294386

RESUMO

In prior art, advances in adaptive optics scanning laser ophthalmoscope (AOSLO) technology have enabled cones in the human fovea to be resolved in healthy eyes with normal vision and low to moderate refractive errors, providing new insight into human foveal anatomy, visual perception, and retinal degenerative diseases. These high-resolution ophthalmoscopes require careful alignment of each optical subsystem to ensure diffraction-limited imaging performance, which is necessary for resolving the smallest foveal cones. This paper presents a systematic and rigorous methodology for building, aligning, calibrating, and testing an AOSLO designed for imaging the cone mosaic of the central fovea in humans with cellular resolution. This methodology uses a two-stage alignment procedure and thorough system testing to achieve diffraction-limited performance. Results from retinal imaging of healthy human subjects under 30 years of age with refractive errors of less than 3.5 diopters using either 680 nm or 840 nm light show that the system can resolve cones at the very center of the fovea, the region where the cones are smallest and most densely packed.


Assuntos
Fóvea Central , Oftalmoscópios , Doenças Retinianas , Humanos , Calibragem , Fóvea Central/diagnóstico por imagem , Lasers , Erros de Refração , Doenças Retinianas/diagnóstico por imagem
3.
Proc Natl Acad Sci U S A ; 117(20): 11178-11183, 2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32358186

RESUMO

It is known that attention shifts prior to a saccade to start processing the saccade target before it lands in the foveola, the high-resolution region of the retina. Yet, once the target is foveated, microsaccades, tiny saccades maintaining the fixated object within the fovea, continue to occur. What is the link between these eye movements and attention? There is growing evidence that these eye movements are associated with covert shifts of attention in the visual periphery, when the attended stimuli are presented far from the center of gaze. Yet, microsaccades are primarily used to explore complex foveal stimuli and to optimize fine spatial vision in the foveola, suggesting that the influences of microsaccades on attention may predominantly impact vision at this scale. To address this question we tracked gaze position with high precision and briefly presented high-acuity stimuli at predefined foveal locations right before microsaccade execution. Our results show that visual discrimination changes prior to microsaccade onset. An enhancement occurs at the microsaccade target location. This modulation is highly selective and it is coupled with a drastic impairment at the opposite foveal location, just a few arcminutes away. This effect is strongest when stimuli are presented closer to the eye movement onset time. These findings reveal that the link between attention and microsaccades is deeper than previously thought, exerting its strongest effects within the foveola. As a result, during fixation, foveal vision is constantly being reshaped both in space and in time with the occurrence of microsaccades.


Assuntos
Atenção/fisiologia , Movimentos Oculares/fisiologia , Fóvea Central/fisiologia , Movimentos Sacádicos/fisiologia , Visão Ocular/fisiologia , Adolescente , Adulto , Feminino , Humanos , Masculino , Estimulação Luminosa , Percepção Visual , Adulto Jovem
4.
PLoS Comput Biol ; 17(2): e1008685, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33534793

RESUMO

The SARS-CoV-2 pandemic of 2020 has mobilised scientists around the globe to research all aspects of the coronavirus virus and its infection. For fruitful and rapid investigation of viral pathomechanisms, a collaborative and interdisciplinary approach is required. Therefore, we have developed ViralLink: a systems biology workflow which reconstructs and analyses networks representing the effect of viruses on intracellular signalling. These networks trace the flow of signal from intracellular viral proteins through their human binding proteins and downstream signalling pathways, ending with transcription factors regulating genes differentially expressed upon viral exposure. In this way, the workflow provides a mechanistic insight from previously identified knowledge of virally infected cells. By default, the workflow is set up to analyse the intracellular effects of SARS-CoV-2, requiring only transcriptomics counts data as input from the user: thus, encouraging and enabling rapid multidisciplinary research. However, the wide-ranging applicability and modularity of the workflow facilitates customisation of viral context, a priori interactions and analysis methods. Through a case study of SARS-CoV-2 infected bronchial/tracheal epithelial cells, we evidence the functionality of the workflow and its ability to identify key pathways and proteins in the cellular response to infection. The application of ViralLink to different viral infections in a context specific manner using different available transcriptomics datasets will uncover key mechanisms in viral pathogenesis.


Assuntos
COVID-19/metabolismo , Biologia Computacional/métodos , Regulação Viral da Expressão Gênica , SARS-CoV-2/patogenicidade , Transdução de Sinais , Algoritmos , Brônquios/virologia , Análise por Conglomerados , Perfilação da Expressão Gênica , Interações Hospedeiro-Patógeno , Humanos , Pesquisa Interdisciplinar , Pulmão/virologia , Modelos Estatísticos , Biologia de Sistemas , Transcriptoma , Fluxo de Trabalho
5.
Proc Natl Acad Sci U S A ; 116(12): 5811-5818, 2019 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-30824596

RESUMO

Humans use saccades to inspect objects of interest with the foveola, the small region of the retina with highest acuity. This process of visual exploration is normally studied over large scenes. However, in everyday tasks, the stimulus within the foveola is complex, and the need for visual exploration may extend to this smaller scale. We have previously shown that fixational eye movements, in particular microsaccades, play an important role in fine spatial vision. Here, we investigate whether task-driven visual exploration occurs during the fixation pauses in between large saccades. Observers judged the expression of faces covering approximately 1°, as if viewed from a distance of many meters. We use a custom system for accurately localizing the line of sight and continually track gaze position at high resolution. Our findings reveal that active spatial exploration, a process driven by the goals of the task, takes place at the foveal scale. The scanning strategies used at this scale resemble those used when examining larger scenes, with idiosyncrasies maintained across spatial scales. These findings suggest that the visual system possesses not only a coarser priority map of the extrafoveal space to guide saccades, but also a finer-grained priority map that is used to guide microsaccades once the region of interest is foveated.


Assuntos
Movimentos Oculares/fisiologia , Fóvea Central/fisiologia , Movimentos Sacádicos/fisiologia , Visão Ocular/fisiologia , Percepção Visual/fisiologia , Adolescente , Adulto , Feminino , Humanos , Masculino , Estimulação Luminosa/métodos , Adulto Jovem
6.
J Vis ; 18(3): 18, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29677334

RESUMO

Small saccades, known as microsaccades, occur frequently during fixation. Several recent studies have argued that a considerable fraction of these movements are present in the traces from one eye only. This claim contrasts with the findings of older reports, which concluded that microsaccades, like larger saccades, are virtually always binocular events. Here we examined the characteristics of small saccades by means of two of the most established high-resolution eye-tracking techniques available. A binocular Dual Purkinje Image eye-tracker was used to record eye movements while observers fixated, with their head immobilized, on markers displayed on a monitor. A specially designed eye-coil system was used to measure eye movements during normal head-free viewing, while subjects fixated on markers at various distances. Monocular microsaccades were virtually absent in both datasets. In the head-fixed data, not a single monocular microsaccade was observed. In the head-free data, only one event appeared to be monocular out of more than a thousand saccades. Monocular microsaccades do not seem to occur during normal head-free or head-immobilized fixation.


Assuntos
Movimentos Sacádicos/fisiologia , Visão Monocular/fisiologia , Adulto , Idoso , Feminino , Fixação Ocular/fisiologia , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
7.
J Neurosci ; 33(35): 14259-68, 2013 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-23986259

RESUMO

Saccadic eye movements facilitate rapid and efficient exploration of visual scenes, but also pose serious challenges to establishing reliable spatial representations. This process presumably depends on extraretinal information about eye position, but it is still unclear whether afferent or efferent signals are implicated and how these signals are combined with the visual input. Using a novel gaze-contingent search paradigm with highly controlled retinal stimulation, we examined the performance of human observers in locating a previously fixated target after a variable number of saccades, a task that generates contrasting predictions for different updating mechanisms. We show that while localization accuracy is unaffected by saccades, localization precision deteriorates nonlinearly, revealing a statistically optimal combination of retinal and extraretinal signals. These results provide direct evidence for optimal multimodal integration in the updating of spatial representations and elucidate the contributions of corollary discharge signals and eye proprioception.


Assuntos
Desempenho Psicomotor , Percepção Espacial , Adulto , Feminino , Humanos , Masculino , Modelos Neurológicos , Retina/fisiologia , Movimentos Sacádicos , Visão Ocular/fisiologia
8.
Curr Biol ; 34(1): 147-155.e2, 2024 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-38154463

RESUMO

Microsaccades, the tiny gaze relocations that occurr during fixation, have been linked to covert attention deployed degrees away from the center of gaze. However, the link between attention and microsaccades is deeper in that it also unfolds at the foveal scale. Here, we have examined the spatial grain of pre-microsaccadic attention across the 1° foveola. Through the use of high-precision eye-tracking and gaze-contingent display system that achieves arcminute precision in gaze localization, we have shown that the spotlight of attention at this scale can reach a strikingly high resolution, in the order of 0.17°. Further, when a microsaccade occurs, vision is modulated in a peculiar way across the foveola; whereas fine spatial vision is enhanced at the microsaccade goal location, it drops at the very center of gaze, where acuity is normally highest. These results reveal the finesse of the visuomotor system and of the interplay between eye movements and attention.


Assuntos
Movimentos Sacádicos , Percepção Visual , Movimentos Oculares , Visão Ocular , Atenção , Fixação Ocular
9.
bioRxiv ; 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38854135

RESUMO

By combining an external display operating at 360 frames per second with an Adaptive Optics Scanning Laser Ophthalmoscope (AOSLO) for human foveal imaging, we demonstrate color stimulus delivery at high spatial and temporal resolution in AOSLO psychophysics experiments. A custom pupil relay enables viewing of the stimulus through a 3-mm effective pupil diameter and provides refractive error correction from -8 to +4 diopters. Performance of the assembled and aligned pupil relay was validated by measuring the wavefront error across the field of view and correction range, and the as-built Strehl ratio was 0.64 or better. High-acuity stimuli were rendered on the external display and imaged through the pupil relay to demonstrate that spatial frequencies up to 54 cycles per degree, corresponding to 20/11 visual acuity, are resolved. The completed external display was then used to render fixation markers across the field of view of the monitor, and a continuous retinal montage spanning 9.4 by 5.4 degrees of visual angle was acquired with the AOSLO. We conducted eye-tracking experiments during free-viewing and high-acuity tasks with polychromatic images presented on the external display. Sub-arcminute eye position uncertainty was achieved, enabling precise localization of the line of sight on the monitor while simultaneously imaging the fine structure of the human central fovea. This high refresh rate display overcomes the temporal, spectral, and field of view limitations of AOSLO-based stimulus presentation, enabling natural monocular viewing of stimuli in psychophysics experiments conducted with AOSLO.

10.
Autophagy ; 20(1): 188-201, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37589496

RESUMO

Macroautophagy/autophagy is a highly-conserved catabolic procss eliminating dysfunctional cellular components and invading pathogens. Autophagy malfunction contributes to disorders such as cancer, neurodegenerative and inflammatory diseases. Understanding autophagy regulation in health and disease has been the focus of the last decades. We previously provided an integrated database for autophagy research, the Autophagy Regulatory Network (ARN). For the last eight years, this resource has been used by thousands of users. Here, we present a new and upgraded resource, AutophagyNet. It builds on the previous database but contains major improvements to address user feedback and novel needs due to the advancement in omics data availability. AutophagyNet contains updated interaction curation and integration of over 280,000 experimentally verified interactions between core autophagy proteins and their protein, transcriptional and post-transcriptional regulators as well as their potential upstream pathway connections. AutophagyNet provides annotations for each core protein about their role: 1) in different types of autophagy (mitophagy, xenophagy, etc.); 2) in distinct stages of autophagy (initiation, expansion, termination, etc.); 3) with subcellular and tissue-specific localization. These annotations can be used to filter the dataset, providing customizable download options tailored to the user's needs. The resource is available in various file formats (e.g. CSV, BioPAX and PSI-MI), and data can be analyzed and visualized directly in Cytoscape. The multi-layered regulation of autophagy can be analyzed by combining AutophagyNet with tissue- or cell type-specific (multi-)omics datasets (e.g. transcriptomic or proteomic data). The resource is publicly accessible at http://autophagynet.org.Abbreviations: ARN: Autophagy Regulatory Network; ATG: autophagy related; BCR: B cell receptor pathway; BECN1: beclin 1; GABARAP: GABA type A receptor-associated protein; IIP: innate immune pathway; LIR: LC3-interacting region; lncRNA: long non-coding RNA; MAP1LC3B: microtubule associated protein 1 light chain 3 beta; miRNA: microRNA; NHR: nuclear hormone receptor; PTM: post-translational modification; RTK: receptor tyrosine kinase; TCR: T cell receptor; TLR: toll like receptor.


Assuntos
Autofagia , MicroRNAs , Autofagia/fisiologia , Proteômica , Proteína Beclina-1 , Mitofagia , Transdução de Sinais/genética
11.
Nature ; 447(7146): 851-4, 2007 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-17568745

RESUMO

Our eyes are constantly in motion. Even during visual fixation, small eye movements continually jitter the location of gaze. It is known that visual percepts tend to fade when retinal image motion is eliminated in the laboratory. However, it has long been debated whether, during natural viewing, fixational eye movements have functions in addition to preventing the visual scene from fading. In this study, we analysed the influence in humans of fixational eye movements on the discrimination of gratings masked by noise that has a power spectrum similar to that of natural images. Using a new method of retinal image stabilization, we selectively eliminated the motion of the retinal image that normally occurs during the intersaccadic intervals of visual fixation. Here we show that fixational eye movements improve discrimination of high spatial frequency stimuli, but not of low spatial frequency stimuli. This improvement originates from the temporal modulations introduced by fixational eye movements in the visual input to the retina, which emphasize the high spatial frequency harmonics of the stimulus. In a natural visual world dominated by low spatial frequencies, fixational eye movements appear to constitute an effective sampling strategy by which the visual system enhances the processing of spatial detail.


Assuntos
Movimentos Oculares/fisiologia , Fixação Ocular/fisiologia , Retina/fisiologia , Visão Ocular/fisiologia , Humanos , Movimento (Física) , Estimulação Luminosa
12.
Vision Res ; 211: 108277, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37379763

RESUMO

Human vision relies on a tiny region of the retina, the 1-deg foveola, to achieve high spatial resolution. Foveal vision is of paramount importance in daily activities, yet its study is challenging, as eye movements incessantly displace stimuli across this region. Here I will review work that, building on recent advances in eye-tracking and gaze-contingent display, examines how attention and eye movements operate at the foveal level. This research highlights how exploration of fine spatial detail unfolds following visuomotor strategies reminiscent of those occurring at larger scales. It shows that, together with highly precise control of attention, this motor activity is linked to non-homogenous processing within the foveola and selectively modulates sensitivity both in space and time. Overall, the picture emerges of a highly dynamic foveal perception in which fine spatial vision, rather than simply being the result of placing a stimulus at the center of gaze, is the result of a finely tuned and orchestrated synergy of motor, cognitive, and attentional processes.


Assuntos
Movimentos Oculares , Visão Ocular , Humanos , Estimulação Luminosa , Fóvea Central , Atenção
13.
bioRxiv ; 2023 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-37961438

RESUMO

Breast cancer is the most commonly diagnosed malignancy and the major leading cause of tumor-related deaths in women. It is estimated that the majority of breast tumor-related deaths are a consequence of metastasis, to which no cure exists at present. The FAK family proteins Proline-rich tyrosine kinase (PYK2) and focal adhesion kinase (FAK) are highly expressed in breast cancer, but the exact cellular and signaling mechanisms by which they regulate in vivo tumor cell invasiveness and consequent metastatic dissemination are mostly unknown. Using a PYK2 and FAK knockdown xenograft model we show here, for the first time, that ablation of either PYK2 or FAK decreases primary tumor size and significantly reduces Tumor MicroEnvironment of Metastasis (TMEM) doorway activation, leading to decreased intravasation and reduced spontaneous lung metastasis. Intravital imaging analysis further demonstrates that PYK2, but not FAK, regulates a motility phenotype switch between focal adhesion-mediated fast motility and invadopodia-dependent, ECM-degradation associated slow motility within the primary tumor. Furthermore, we validate our in vivo and intravital imaging results with integrated transcriptomic and proteomic data analysis from xenograft knockdown tumors and reveal new and distinct pathways by which these two homologous kinases regulate breast tumor cell invasiveness and consequent metastatic dissemination. Our findings identify PYK2 and FAK as novel mediators of mammary tumor progression and metastasis and as candidate therapeutic targets for breast cancer metastasis.

14.
J Vis ; 12(6)2012 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-22728680

RESUMO

During visual fixation, microscopic eye movements shift the image on the retina over a large number of photoreceptors. Although these movements have been investigated for almost a century, the amount of retinal image motion they create remains unclear. Currently available estimates rely on assumptions about the probability distributions of eye movements that have never been tested. Furthermore, these estimates were based on data collected with only a few, highly experienced and motivated observers and may not be representative of the instability of naive and inexperienced subjects in experiments that require steady fixation. In this study, we used a high-resolution eye-tracker to estimate the probability distributions of gaze position in a relatively large group of human observers, most of whom were untrained, while they were asked to maintain fixation at the center of a uniform field in the presence/absence of a fixation marker. In all subjects, the probability distribution of gaze position deviated from normality, the underlying assumption of most previous studies. The resulting fixational dispersion of gaze was much larger than previously reported and varied greatly across individuals. Unexpectedly, the precision by which different observers maintained fixation on the marker was best predicted by the properties of ocular drift rather than those of microsaccades. Our results show that, during fixation, the eyes move by larger amounts and at higher speeds than commonly assumed and highlight the importance of ocular drift in maintaining accurate fixation.


Assuntos
Atenção/fisiologia , Condicionamento Psicológico/fisiologia , Fixação Ocular/fisiologia , Movimentos Sacádicos/fisiologia , Adulto , Humanos , Modelos Lineares , Modelos Neurológicos , Estimulação Luminosa/métodos , Adulto Jovem
15.
Elife ; 112022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35289270

RESUMO

Eye movements are neither necessary nor sufficient to account for the neural effects associated with covert attention.


Assuntos
Fixação Ocular , Movimentos Sacádicos , Biomarcadores , Movimentos Oculares , Percepção Visual
16.
Cell Mol Gastroenterol Hepatol ; 14(2): 311-331, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35643188

RESUMO

Homeostatic functions of a living tissue, such as the gastrointestinal tract, rely on highly sophisticated and finely tuned cell-to-cell interactions. These crosstalks evolve and continuously are refined as the tissue develops and give rise to specialized cells performing general and tissue-specific functions. To study these systems, stem cell-based in vitro models, often called organoids, and non-stem cell-based primary cell aggregates (called spheroids) appeared just over a decade ago. These models still are evolving and gaining complexity, making them the state-of-the-art models for studying cellular crosstalk in the gastrointestinal tract, and to investigate digestive pathologies, such as inflammatory bowel disease, colorectal cancer, and liver diseases. However, the use of organoid- or spheroid-based models to recapitulate in vitro the highly complex structure of in vivo tissue remains challenging, and mainly restricted to expert developmental cell biologists. Here, we condense the founding knowledge and key literature information that scientists adopting the organoid technology for the first time need to consider when using these models for novel biological questions. We also include information that current organoid/spheroid users could use to add to increase the complexity to their existing models. We highlight the current and prospective evolution of these models through bridging stem cell biology with biomaterial and scaffold engineering research areas. Linking these complementary fields will increase the in vitro mimicry of in vivo tissue, and potentially lead to more successful translational biomedical applications. Deepening our understanding of the nature and dynamic fine-tuning of intercellular crosstalks will enable identifying novel signaling targets for new or repurposed therapeutics used in many multifactorial diseases.


Assuntos
Organoides , Células-Tronco , Trato Gastrointestinal , Estudos Prospectivos
17.
NPJ Syst Biol Appl ; 8(1): 15, 2022 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-35501398

RESUMO

Increasing evidence points towards the key role of the epithelium in the systemic and over-activated immune response to viral infection, including SARS-CoV-2 infection. Yet, how viral infection alters epithelial-immune cell interactions regulating inflammatory responses, is not well known. Available experimental approaches are insufficient to properly analyse this complex system, and computational predictions and targeted data integration are needed as an alternative approach. In this work, we propose an integrated computational biology framework that models how infection alters intracellular signalling of epithelial cells and how this change impacts the systemic immune response through modified interactions between epithelial cells and local immune cell populations. As a proof-of-concept, we focused on the role of intestinal and upper-airway epithelial infection. To characterise the modified epithelial-immune interactome, we integrated intra- and intercellular networks with single-cell RNA-seq data from SARS-CoV-2 infected human ileal and colonic organoids as well as from infected airway ciliated epithelial cells. This integrated methodology has proven useful to point out specific epithelial-immune interactions driving inflammation during disease response, and propose relevant molecular targets to guide focused experimental analysis.


Assuntos
COVID-19 , Viroses , Células Epiteliais , Humanos , SARS-CoV-2 , Transdução de Sinais
18.
J Neurosci ; 30(33): 11143-50, 2010 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-20720121

RESUMO

We are normally not aware of the microscopic eye movements that keep the retinal image in motion during visual fixation. In principle, perceptual cancellation of the displacements of the retinal stimulus caused by fixational eye movements could be achieved either by means of motor/proprioceptive information or by inferring eye movements directly from the retinal stimulus. In this study, we examined the mechanisms underlying visual stability during ocular drift, the primary source of retinal image motion during fixation on a stationary scene. By using an accurate system for gaze-contingent display control, we decoupled the eye movements of human observers from the changes in visual input that they normally cause. We show that the visual system relies on the spatiotemporal stimulus on the retina, rather than on extraretinal information, to discard the motion signals resulting from ocular drift. These results have important implications for the establishment of stable visual representations in the brain and argue that failure to visually determine eye drift contributes to well known motion illusions such as autokinesis and induced movement.


Assuntos
Movimentos Oculares , Retina , Percepção Visual , Sinais (Psicologia) , Escuridão , Discriminação Psicológica , Feminino , Humanos , Iluminação , Masculino , Movimento (Física) , Percepção de Movimento , Estimulação Luminosa , Psicofísica , Fatores de Tempo , Visão Ocular
19.
J Crohns Colitis ; 15(7): 1222-1235, 2021 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-33341879

RESUMO

The gut microbiota appears to play a central role in health, and alterations in the gut microbiota are observed in both forms of inflammatory bowel disease [IBD], namely Crohn's disease and ulcerative colitis. Yet, the mechanisms behind host-microbiota interactions in IBD, especially at the intestinal epithelial cell level, are not yet fully understood. Dissecting the role of host-microbiota interactions in disease onset and progression is pivotal, and requires representative models mimicking the gastrointestinal ecosystem, including the intestinal epithelium, the gut microbiota, and immune cells. New advancements in organoid microfluidics technology are facilitating the study of IBD-related microbial-epithelial cross-talk, and the discovery of novel microbial therapies. Here, we review different organoid-based ex vivo models that are currently available, and benchmark their suitability and limitations for specific research questions. Organoid applications, such as patient-derived organoid biobanks for microbial screening and 'omics technologies, are discussed, highlighting their potential to gain better mechanistic insights into disease mechanisms and eventually allow personalised medicine.


Assuntos
Disbiose/microbiologia , Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais/microbiologia , Organoides , Progressão da Doença
20.
Curr Biol ; 31(12): 2698-2703.e2, 2021 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-33930304

RESUMO

Exogenous attention, a powerful adaptive tool that quickly and involuntarily orients processing resources to salient stimuli, has traditionally been studied in the lower-resolution parafoveal and peripheral visual field.1-4 It is not known whether and how it operates across the 1° central fovea where visual resolution peaks.5,6 Here we investigated the dynamics of exogenous attention in the foveola. To circumvent the challenges posed by fixational eye movements at this scale, we used high-precision eye-tracking and gaze-contingent display control for retinal stabilization.7 High-acuity stimuli were briefly presented foveally at varying delays following an exogenous cue. Attended and unattended locations were just a few arcminutes away from the preferred locus of fixation. Our results show that for short temporal delays, observers' ability to discriminate fine detail is enhanced at the cued location. This enhancement is highly localized and does not extend to the nearby locations only 16' away. On a longer timescale, instead, we report an inverse effect: paradoxically, acuity is sharper at the unattended locations, resembling the phenomenon of inhibition of return at much larger eccentricities.8-10 Although exogenous attention represents a mechanism for low-cost monitoring of the environment in the extrafoveal space, these findings show that, in the foveola, it transiently modulates vision of detail with a high degree of resolution. Together with inhibition of return, it may aid visual exploration of complex foveal stimuli.11.


Assuntos
Atenção , Fóvea Central , Sinais (Psicologia) , Movimentos Oculares , Campos Visuais , Percepção Visual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA