Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Cell ; 172(4): 825-840.e18, 2018 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-29336888

RESUMO

Therapeutic harnessing of adaptive immunity via checkpoint inhibition has transformed the treatment of many cancers. Despite unprecedented long-term responses, most patients do not respond to these therapies. Immunotherapy non-responders often harbor high levels of circulating myeloid-derived suppressor cells (MDSCs)-an immunosuppressive innate cell population. Through genetic and pharmacological approaches, we uncovered a pathway governing MDSC abundance in multiple cancer types. Therapeutic liver-X nuclear receptor (LXR) agonism reduced MDSC abundance in murine models and in patients treated in a first-in-human dose escalation phase 1 trial. MDSC depletion was associated with activation of cytotoxic T lymphocyte (CTL) responses in mice and patients. The LXR transcriptional target ApoE mediated these effects in mice, where LXR/ApoE activation therapy elicited robust anti-tumor responses and also enhanced T cell activation during various immune-based therapies. We implicate the LXR/ApoE axis in the regulation of innate immune suppression and as a target for enhancing the efficacy of cancer immunotherapy in patients.


Assuntos
Apolipoproteínas E/imunologia , Imunidade Inata , Receptores X do Fígado/imunologia , Células Supressoras Mieloides/imunologia , Neoplasias Experimentais/imunologia , Animais , Apolipoproteínas E/genética , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/patologia , Linhagem Celular Tumoral , Feminino , Receptores X do Fígado/genética , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Células Supressoras Mieloides/patologia , Neoplasias Experimentais/genética , Neoplasias Experimentais/patologia , Neoplasias Experimentais/terapia , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Environ Sci Technol ; 56(4): 2236-2247, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35076215

RESUMO

Quantifying ammonia (NH3) to methane (CH4) enhancement ratios from agricultural sources is important for understanding air pollution and nitrogen deposition. The northeastern Colorado Front Range is home to concentrated animal feeding operations (CAFOs) that produce large emissions of NH3 and CH4. Isolating enhancements of NH3 and CH4 in this region due to agriculture is complicated because CAFOs are often located within regions of oil and natural gas (O&NG) extraction that are a major source of CH4 and other alkanes. Here, we utilize a small research aircraft to collect in situ 1 Hz measurements of gas-phase NH3, CH4, and ethane (C2H6) downwind of CAFOs during three flights conducted in November 2019. Enhancements in NH3 and CH4 are distinguishable up to 10 km downwind of CAFOs with the most concentrated portions of the plumes typically below 0.25 km AGL. We demonstrate that NH3 and C2H6 can be jointly used to separate near-source enhancements in CH4 from agriculture and O&NG. Molar enhancement ratios of NH3 to CH4 are quantified for individual CAFOs in this region, and they range from 0.8 to 2.7 ppbv ppbv-1. A multivariate regression model produces enhancement ratios and quantitative regional source contributions that are consistent with prior studies.


Assuntos
Poluentes Atmosféricos , Metano , Agricultura , Poluentes Atmosféricos/análise , Aeronaves , Amônia , Animais , Colorado , Metano/análise , Gás Natural
3.
Environ Res ; 207: 112197, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-34699758

RESUMO

Exposure to air pollution, including criteria pollutants such as fine particulate matter (PM2.5) and ozone (O3), has been associated with morbidity and mortality in mammals. As a genetically homogenous population that is closely monitored for health, dairy cattle present a unique opportunity to assess the association between changes in air pollution and mammalian health. Milk yield decreases in the summer if temperature and humidity, measured by the Temperature Humidity Index (THI). As O3 levels increase with warmer temperatures, and summer PM2.5 may increase with wildfire smoke, dairy cows may serve as a useful sentinel species to evaluate subacute markers of inflammation and metabolic output and ambient pollution. Over two years, we assessed summertime O3 and PM2.5 concentrations from local US EPA air quality monitors into an auto-regressive mixed model of the association between THI and daily milk production data and bulk tank somatic cell count (SCC). In unadjusted models, a 10 unit increase THI was associated with 28,700 cells/mL (95% CI: 17,700, 39,690) increase in SCC. After controlling for ambient air pollutants, THI was associated with a 14,500 SCC increase (95% CI: 3,400, 25,680), a 48% decrease in effect compared to the crude model. Further, in fully adjusted models, PM2.5 was associated with a 105,500 cells/mL (95% CI: 90,030, 121,050) increase in SCC. Similar results were found for milk production. Results were amplified when high PM2.5 days (95th percentile of observed values) associated with wildfire smoke were removed from the analyses. Our results support the hypothesis that PM2.5 confounds the relationships between THI and milk yield and somatic cell count. The results of this study can be used to inform strategies for intervention to mitigate these impacts at the dairy level and potentially contribute to a model where production animals can act as air quality sentinels.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/toxicidade , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Animais , Canários , Bovinos , Contagem de Células/veterinária , Feminino , Mamíferos , Leite/química , Material Particulado/análise , Material Particulado/toxicidade
4.
Proc Natl Acad Sci U S A ; 116(14): 6641-6646, 2019 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-30886090

RESUMO

Atmospheric oxidation of natural and anthropogenic volatile organic compounds (VOCs) leads to secondary organic aerosol (SOA), which constitutes a major and often dominant component of atmospheric fine particulate matter (PM2.5). Recent work demonstrates that rapid autoxidation of organic peroxy radicals (RO2) formed during VOC oxidation results in highly oxygenated organic molecules (HOM) that efficiently form SOA. As NOx emissions decrease, the chemical regime of the atmosphere changes to one in which RO2 autoxidation becomes increasingly important, potentially increasing PM2.5, while oxidant availability driving RO2 formation rates simultaneously declines, possibly slowing regional PM2.5 formation. Using a suite of in situ aircraft observations and laboratory studies of HOM, together with a detailed molecular mechanism, we show that although autoxidation in an archetypal biogenic VOC system becomes more competitive as NOx decreases, absolute HOM production rates decrease due to oxidant reductions, leading to an overall positive coupling between anthropogenic NOx and localized biogenic SOA from autoxidation. This effect is observed in the Atlanta, Georgia, urban plume where HOM is enhanced in the presence of elevated NO, and predictions for Guangzhou, China, where increasing HOM-RO2 production coincides with increases in NO from 1990 to 2010. These results suggest added benefits to PM2.5 abatement strategies come with NOx emission reductions and have implications for aerosol-climate interactions due to changes in global SOA resulting from NOx interactions since the preindustrial era.

5.
Environ Sci Technol ; 55(13): 9129-9139, 2021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-34161066

RESUMO

We present an updated fuel-based oil and gas (FOG) inventory with estimates of nitrogen oxide (NOx) emissions from oil and natural gas production in the contiguous US (CONUS). We compare the FOG inventory with aircraft-derived ("top-down") emissions for NOx over footprints that account for ∼25% of US oil and natural gas production. Across CONUS, we find that the bottom-up FOG inventory combined with other anthropogenic emissions is on average within ∼10% of top-down aircraft-derived NOx emissions. We also find good agreement in the trends of NOx from drilling- and production-phase activities, as inferred by satellites and in the bottom-up inventory. Leveraging tracer-tracer relationships derived from aircraft observations, methane (CH4) and non-methane volatile organic compound (NMVOC) emissions have been added to the inventory. Our total CONUS emission estimates for 2015 of oil and natural gas are 0.45 ± 0.14 Tg NOx/yr, 15.2 ± 3.0 Tg CH4/yr, and 5.7 ± 1.7 Tg NMVOC/yr. Compared to the US National Emissions Inventory and Greenhouse Gas Inventory, FOG NOx emissions are ∼40% lower, while inferred CH4 and NMVOC emissions are up to a factor of ∼2 higher. This suggests that NMVOC/NOx emissions from oil and gas basins are ∼3 times higher than current estimates and will likely affect how air quality models represent ozone formation downwind of oil and gas fields.


Assuntos
Poluentes Atmosféricos , Ozônio , Poluentes Atmosféricos/análise , Metano/análise , Gás Natural/análise , Campos de Petróleo e Gás , Ozônio/análise
6.
Environ Sci Technol ; 54(10): 5954-5963, 2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32294377

RESUMO

Wildfires are an important source of nitrous acid (HONO), a photolabile radical precursor, yet in situ measurements and quantification of primary HONO emissions from open wildfires have been scarce. We present airborne observations of HONO within wildfire plumes sampled during the Western Wildfire Experiment for Cloud chemistry, Aerosol absorption and Nitrogen (WE-CAN) campaign. ΔHONO/ΔCO close to the fire locations ranged from 0.7 to 17 pptv ppbv-1 using a maximum enhancement method, with the median similar to previous observations of temperate forest fire plumes. Measured HONO to NOx enhancement ratios were generally factors of 2, or higher, at early plume ages than previous studies. Enhancement ratios scale with modified combustion efficiency and certain nitrogenous trace gases, which may be useful to estimate HONO release when HONO observations are lacking or plumes have photochemical exposures exceeding an hour as emitted HONO is rapidly photolyzed. We find that HONO photolysis is the dominant contributor to hydrogen oxide radicals (HOx = OH + HO2) in early stage (<3 h) wildfire plume evolution. These results highlight the role of HONO as a major component of reactive nitrogen emissions from wildfires and the main driver of initial photochemical oxidation.


Assuntos
Poluentes Atmosféricos/análise , Incêndios Florestais , Aerossóis , Ácido Nitroso/análise , Fumaça
7.
Environ Sci Technol ; 53(5): 2529-2538, 2019 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-30698424

RESUMO

Biomass burning (BB) is a large source of reactive compounds in the atmosphere. While the daytime photochemistry of BB emissions has been studied in some detail, there has been little focus on nighttime reactions despite the potential for substantial oxidative and heterogeneous chemistry. Here, we present the first analysis of nighttime aircraft intercepts of agricultural BB plumes using observations from the NOAA WP-3D aircraft during the 2013 Southeast Nexus (SENEX) campaign. We use these observations in conjunction with detailed chemical box modeling to investigate the formation and fate of oxidants (NO3, N2O5, O3, and OH) and BB volatile organic compounds (BBVOCs), using emissions representative of agricultural burns (rice straw) and western wildfires (ponderosa pine). Field observations suggest NO3 production was approximately 1 ppbv hr-1, while NO3 and N2O5 were at or below 3 pptv, indicating rapid NO3/N2O5 reactivity. Model analysis shows that >99% of NO3/N2O5 loss is due to BBVOC + NO3 reactions rather than aerosol uptake of N2O5. Nighttime BBVOC oxidation for rice straw and ponderosa pine fires is dominated by NO3 (72, 53%, respectively) but O3 oxidation is significant (25, 43%), leading to roughly 55% overnight depletion of the most reactive BBVOCs and NO2.


Assuntos
Atmosfera , Incêndios , Aerossóis , Aeronaves , Biomassa
8.
Environ Sci Technol ; 52(17): 10175-10185, 2018 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-30071716

RESUMO

In this study, we develop an alternative Fuel-based Oil and Gas inventory (FOG) of nitrogen oxides (NO x) from oil and gas production using publicly available fuel use records and emission factors reported in the literature. FOG is compared with the Environmental Protection Agency's 2014 National Emissions Inventory (NEI) and with new top-down estimates of NO x emissions derived from aircraft and ground-based field measurement campaigns. Compared to our top-down estimates derived in four oil and gas basins (Uinta, UT, Haynesville, TX/LA, Marcellus, PA, and Fayetteville, AR), the NEI overestimates NO x by over a factor of 2 in three out of four basins, while FOG is generally consistent with atmospheric observations. Challenges in estimating oil and gas engine activity, rather than uncertainties in NO x emission factors, may explain gaps between the NEI and top-down emission estimates. Lastly, we find a consistent relationship between reactive odd nitrogen species (NO y) and ambient methane (CH4) across basins with different geological characteristics and in different stages of production. Future work could leverage this relationship as an additional constraint on CH4 emissions from oil and gas basins.


Assuntos
Poluentes Atmosféricos , Óleos Combustíveis , Metano , Gás Natural , Óxidos de Nitrogênio , Campos de Petróleo e Gás
9.
Environ Sci Technol ; 52(13): 7360-7370, 2018 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-29870662

RESUMO

Recent studies suggest overestimates in current U.S. emission inventories of nitrogen oxides (NO x = NO + NO2). Here, we expand a previously developed fuel-based inventory of motor-vehicle emissions (FIVE) to the continental U.S. for the year 2013, and evaluate our estimates of mobile source emissions with the U.S. Environmental Protection Agency's National Emissions Inventory (NEI) interpolated to 2013. We find that mobile source emissions of NO x and carbon monoxide (CO) in the NEI are higher than FIVE by 28% and 90%, respectively. Using a chemical transport model, we model mobile source emissions from FIVE, and find consistent levels of urban NO x and CO as measured during the Southeast Nexus (SENEX) Study in 2013. Lastly, we assess the sensitivity of ozone (O3) over the Eastern U.S. to uncertainties in mobile source NO x emissions and biogenic volatile organic compound (VOC) emissions. The ground-level O3 is sensitive to reductions in mobile source NO x emissions, most notably in the Southeastern U.S. and during O3 exceedance events, under the revised standard proposed in 2015 (>70 ppb, 8 h maximum). This suggests that decreasing mobile source NO x emissions could help in meeting more stringent O3 standards in the future.


Assuntos
Poluentes Atmosféricos , Ozônio , Óxidos de Nitrogênio , Sudeste dos Estados Unidos , Emissões de Veículos
10.
J Phys Chem A ; 120(9): 1468-78, 2016 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-26575342

RESUMO

NOx (NOx ≡ NO + NO2) regulates O3 and HOx (HOx ≡ OH + HO2) concentrations in the upper troposphere. In the laboratory, it is difficult to measure rates and branching ratios of the chemical reactions affecting NOx at the low temperatures and pressures characteristic of the upper troposphere, making direct measurements in the atmosphere especially useful. We report quasi-Lagrangian observations of the chemical evolution of an air parcel following a lightning event that results in high NOx concentrations. These quasi-Lagrangian measurements obtained during the Deep Convective Clouds and Chemistry experiment are used to characterize the daytime rates for conversion of NOx to different peroxy nitrates, the sum of alkyl and multifunctional nitrates, and HNO3. We infer the following production rate constants [in (cm(3)/molecule)/s] at 225 K and 230 hPa: 7.2(±5.7) × 10(-12) (CH3O2NO2), 5.1(±3.1) × 10(-13) (HO2NO2), 1.3(±0.8) × 10(-11) (PAN), 7.3(±3.4) × 10(-12) (PPN), and 6.2(±2.9) × 10(-12) (HNO3). The HNO3 and HO2NO2 rates are ∼ 30-50% lower than currently recommended whereas the other rates are consistent with current recommendations to within ±30%. The analysis indicates that HNO3 production from the HO2 and NO reaction (if any) must be accompanied by a slower rate for the reaction of OH with NO2, keeping the total combined rate for the two processes at the rate reported for HNO3 production above.

11.
Proc Natl Acad Sci U S A ; 109(50): 20280-5, 2012 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-22205764

RESUMO

During the Deepwater Horizon (DWH) oil spill, a wide range of gas and aerosol species were measured from an aircraft around, downwind, and away from the DWH site. Additional hydrocarbon measurements were made from ships in the vicinity. Aerosol particles of respirable sizes were on occasions a significant air quality issue for populated areas along the Gulf Coast. Yields of organic aerosol particles and emission factors for other atmospheric pollutants were derived for the sources from the spill, recovery, and cleanup efforts. Evaporation and subsequent secondary chemistry produced organic particulate matter with a mass yield of 8 ± 4% of the oil mixture reaching the water surface. Approximately 4% by mass of oil burned on the surface was emitted as soot particles. These yields can be used to estimate the effects on air quality for similar events as well as for this spill at other times without these data. Whereas emission of soot from burning surface oil was large during the episodic burns, the mass flux of secondary organic aerosol to the atmosphere was substantially larger overall. We use a regional air quality model to show that some observed enhancements in organic aerosol concentration along the Gulf Coast were likely due to the DWH spill. In the presence of evaporating hydrocarbons from the oil, NO(x) emissions from the recovery and cleanup operations produced ozone.


Assuntos
Poluentes Atmosféricos/análise , Poluentes Atmosféricos/toxicidade , Poluição por Petróleo , Aerossóis/análise , Aerossóis/toxicidade , Monitoramento Ambiental , Gases/análise , Gases/toxicidade , Golfo do México , Humanos , Modelos Teóricos , Compostos Orgânicos/análise , Compostos Orgânicos/toxicidade , Material Particulado/análise , Material Particulado/toxicidade , Estados Unidos
12.
J Air Waste Manag Assoc ; 73(12): 951-968, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37850745

RESUMO

Carlsbad Caverns National Park (CAVE) is located in southeastern New Mexico and is adjacent to the Permian Basin, one of the most productive oil and natural gas (O&G) production regions in the United States. Since 2018, ozone (O3) at CAVE has frequently exceeded the 70 ppbv 8-hour National Ambient Air Quality Standard. We examine the influence of regional emissions on O3 formation using observations of O3, nitrogen oxides (NOx = NO + NO2), a suite of volatile organic compounds (VOCs), peroxyacetyl nitrate (PAN), and peroxypropionyl nitrate (PPN). Elevated O3 and its precursors are observed when the wind is from the southeast, the direction of the Permian Basin. We identify 13 days during the July 25 to September 5, 2019 study period when the maximum daily 8-hour average (MDA8) O3 exceeded 65 ppbv; MDA8 O3 exceeded 70 ppbv on 5 of these days. The results of a positive matrix factorization (PMF) analysis are used to identify and attribute source contributions of VOCs and NOx. On days when the winds are from the southeast, there are larger contributions from factors associated with primary O&G emissions; and, on high O3 days, there is more contribution from factors associated with secondary photochemical processing of O&G emissions. The observed ratio of VOCs to NOx is consistently high throughout the study period, consistent with NOx-limited O3 production. Finally, all high O3 days coincide with elevated acyl peroxy nitrate abundances with PPN to PAN ratios > 0.15 ppbv ppbv-1 indicating that anthropogenic VOC precursors, and often alkanes specifically, dominate the photochemistry.Implications: The results above strongly indicate NOx-sensitive photochemistry at Carlsbad Caverns National Park indicating that reductions in NOx emissions should drive reductions in O3. However, the NOx-sensitivity is largely driven by emissions of NOx into a VOC-rich environment, and a high PPN:PAN ratio and its relationship to O3 indicate substantial influence from alkanes in the regional photochemistry. Thus, simultaneous reductions in emissions of NOx and non-methane VOCs from the oil and gas sector should be considered for reducing O3 at Carlsbad Caverns National Park. Reductions in non-methane VOCs will have the added benefit of reducing formation of other secondary pollutants and air toxics.


Assuntos
Poluentes Atmosféricos , Ozônio , Compostos Orgânicos Voláteis , Ozônio/análise , Poluentes Atmosféricos/análise , Nitratos/análise , Compostos Orgânicos Voláteis/análise , New Mexico , Cavernas , Parques Recreativos , Alcanos/análise , Monitoramento Ambiental/métodos , China
13.
J Air Waste Manag Assoc ; 73(12): 914-929, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37850691

RESUMO

Carlsbad Caverns National Park (CAVE), located in southeastern New Mexico, experiences elevated ground-level ozone (O3) exceeding the National Ambient Air Quality Standard (NAAQS) of 70 ppbv. It is situated adjacent to the Permian Basin, one of the largest oil and gas (O&G) producing regions in the US. In 2019, the Carlsbad Caverns Air Quality Study (CarCavAQS) was conducted to examine impacts of different sources on ozone precursors, including nitrogen oxides (NOx) and volatile organic compounds (VOCs). Here, we use positive matrix factorization (PMF) analysis of speciated VOCs to characterize VOC sources at CAVE during the study. Seven factors were identified. Three factors composed largely of alkanes and aromatics with different lifetimes were attributed to O&G development and production activities. VOCs in these factors were typical of those emitted by O&G operations. Associated residence time analyses (RTA) indicated their contributions increased in the park during periods of transport from the Permian Basin. These O&G factors were the largest contributor to VOC reactivity with hydroxyl radicals (62%). Two PMF factors were rich in photochemically generated secondary VOCs; one factor contained species with shorter atmospheric lifetimes and one with species with longer lifetimes. RTA of the secondary factors suggested impacts of O&G emissions from regions farther upwind, such as Eagle Ford Shale and Barnett Shale formations. The last two factors were attributed to alkenes likely emitted from vehicles or other combustion sources in the Permian Basin and regional background VOCs, respectively.Implications: Carlsbad Caverns National Park experiences ground-level ozone exceeding the National Ambient Air Quality Standard. Volatile organic compounds are critical precursors to ozone formation. Measurements in the Park identify oil and gas production and development activities as the major contributors to volatile organic compounds. Emissions from the adjacent Permian Basin contributed to increases in primary species that enhanced local ozone formation. Observations of photochemically generated compounds indicate that ozone was also transported from shale formations and basins farther upwind. Therefore, emission reductions of volatile organic compounds from oil and gas activities are important for mitigating elevated O3 in the region.


Assuntos
Poluentes Atmosféricos , Ozônio , Compostos Orgânicos Voláteis , Poluentes Atmosféricos/análise , Compostos Orgânicos Voláteis/análise , Cavernas , Parques Recreativos , Ozônio/análise , Monitoramento Ambiental , China , Emissões de Veículos/análise
14.
J Air Waste Manag Assoc ; 72(11): 1201-1218, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35605169

RESUMO

Carlsbad Caverns National Park in southeastern New Mexico is adjacent to the Permian Basin, one of the most productive oil and gas regions in the country. The 2019 Carlsbad Caverns Air Quality Study (CarCavAQS) was designed to examine the influence of regional sources, including urban emissions, oil and gas development, wildfires, and soil dust on air quality in the park. Field measurements of aerosols, trace gases, and deposition were conducted from 25 July through 5 September 2019. Here, we focus on observations of fine particles and key trace gas precursors to understand the important contributing species and their sources and associated impacts on haze. Key gases measured included aerosol precursors, nitric acid and ammonia, and oil and gas tracer, methane. High-time resolution (6-min) PM2.5 mass ranged up to 31.8 µg m-3, with an average of 7.67 µg m-3. The main inorganic ion contributors were sulfate (avg 1.3 µg m-3), ammonium (0.30 µg m-3), calcium (Ca2+) (0.22 µg m-3), nitrate (0.16 µg m-3), and sodium (0.057 µg m-3). The WSOC concentration averaged 1.2 µg C m-3. Sharp spikes were observed in Ca2+, consistent with local dust generation and transport. Ion balance analysis and abundant nitric acid suggest PM2.5 nitrate often reflected reaction between nitric acid and sea salt, forming sodium nitrate, and between nitric acid and soil dust containing calcium carbonate, forming calcium nitrate. Sulfate and soil dust are the major contributors to modeled light extinction in the 24-hr average daily IMPROVE observations. Higher time resolution data revealed a maximum 1-hr extinction value of 90 Mm-1 (excluding coarse aerosol) and included periods of significant light extinction from BC as well as sulfate and soil dust. Residence time analysis indicated enrichment of sulfate, BC, and methane during periods of transport from the southeast, the direction of greatest abundance of oil and gas development.Implications: Rapid development of U.S. oil and gas resources raises concerns about potential impacts on air quality in National Parks. Measurements in Carlsbad Caverns National Park provide new insight into impacts of unconventional oil and gas development and other sources on visual air quality in the park. Major contributors to visibility impairment include sulfate, soil dust (often reacted with nitric acid), and black carbon. The worst periods of visibility and highest concentrations of many aerosol components were observed during transport from the southeast, a region of dense Permian Basin oil and gas development.


Assuntos
Poluentes Atmosféricos , Nitratos , Nitratos/análise , Poluentes Atmosféricos/análise , Parques Recreativos , Monitoramento Ambiental , Cavernas , Ácido Nítrico/análise , Aerossóis/análise , Poeira/análise , Gases/análise , Óxidos de Nitrogênio/análise , Sulfatos/análise , Solo , Metano/análise , Material Particulado/análise
15.
J Adv Model Earth Syst ; 14(6): e2021MS002889, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35864945

RESUMO

A new configuration of the Community Earth System Model (CESM)/Community Atmosphere Model with full chemistry (CAM-chem) supporting the capability of horizontal mesh refinement through the use of the spectral element (SE) dynamical core is developed and called CESM/CAM-chem-SE. Horizontal mesh refinement in CESM/CAM-chem-SE is unique and novel in that pollutants such as ozone are accurately represented at human exposure relevant scales while also directly including global feedbacks. CESM/CAM-chem-SE with mesh refinement down to ∼14 km over the conterminous US (CONUS) is the beginning of the Multi-Scale Infrastructure for Chemistry and Aerosols (MUSICAv0). Here, MUSICAv0 is evaluated and used to better understand how horizontal resolution and chemical complexity impact ozone and ozone precursors over CONUS as compared to measurements from five aircraft campaigns, which occurred in 2013. This field campaign analysis demonstrates the importance of using finer horizontal resolution to accurately simulate ozone precursors such as nitrogen oxides and carbon monoxide. In general, the impact of using more complex chemistry on ozone and other oxidation products is more pronounced when using finer horizontal resolution where a larger number of chemical regimes are resolved. Large model biases for ozone near the surface remain in the Southeast US as compared to the aircraft observations even with updated chemistry and finer horizontal resolution. This suggests a need for adding the capability of replacing sections of global emission inventories with regional inventories, increasing the vertical resolution in the planetary boundary layer, and reducing model biases in meteorological variables such as temperature and clouds.

16.
J Int AIDS Soc ; 24(12): e25859, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34911162

RESUMO

INTRODUCTION: We previously showed that the rectal mucosal immune environment among men who have sex with men (MSM) engaging in condomless receptive anal intercourse (CRAI) is immunologically distinct from that of men who do not engage in anal intercourse (AI). Here, we further examined these differences with quantitative immunohistochemistry to better understand the geographic distribution of immune markers of interest. METHODS: We enrolled a cohort of MSM engaging in CRAI (n = 41) and men who do not engage in AI (n = 21) between October 2013 and April 2015. Participants were healthy, HIV-negative men aged 18-45 from the metro Atlanta area. We performed rectal mucosal sampling via rigid sigmoidoscopy during two study visits separated by a median of nine weeks and timed with sexual activity for MSM engaging in CRAI. We used standardized, automated immunohistochemistry and quantitative image analysis to investigate the rectal mucosal distribution of neutrophils (MPO), IL-17-producing cells (IL-17) and Tregs (FOXP3) in the lamina propria, and cellular proliferation (Ki67) and adherens junction protein (E-cadherin) in the epithelium. We examined associations between biomarker expression and the rectal mucosal microbiota composition by 16s rRNA sequencing. RESULTS: Relative to the colonic crypt base, IL-17, FOXP3, and MPO expression increased towards the rectal lumen, while Ki67 decreased and E-cadherin was more uniformly distributed. Throughout the rectal mucosa distribution examined, MSM engaging in CRAI had higher mean lamina propria MPO expression (p = 0.04) and epithelial Ki67 (p = 0.04) compared to controls. There were no significant differences in IL-17, FOXP3 or E-cadherin expression. We found no significant associations of the five biomarkers with the global rectal microbiota composition or the individual taxa examined. CONCLUSIONS: Understanding the mucosal distribution of inflammatory mediators can enhance our knowledge of the earliest events in HIV transmission. Neutrophil enrichment and crypt epithelial cell proliferation likely represent sub-clinical inflammation in response to CRAI in the rectal mucosa of MSM, which could increase the risk for HIV acquisition. However, the contributory role of the microbiota in mucosal inflammation among MSM remains unclear. HIV prevention may be enhanced by interventions that reduce inflammation or capitalize on the presence of specific inflammatory mechanisms during HIV exposure.


Assuntos
Infecções por HIV , Minorias Sexuais e de Gênero , Biomarcadores , Georgia , Homossexualidade Masculina , Humanos , Inflamação , Masculino , RNA Ribossômico 16S , Comportamento Sexual
17.
PLoS One ; 12(11): e0187531, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29091969

RESUMO

Women are underrepresented in a number of science, technology, engineering, and mathematics (STEM) disciplines. Limited diversity in the development of the STEM workforce has negative implications for scientific innovation, creativity, and social relevance. The current study reports the first-year results of the PROmoting Geoscience Research, Education, and SuccesS (PROGRESS) program, a novel theory-driven informal mentoring program aimed at supporting first- and second-year female STEM majors. Using a prospective, longitudinal, multi-site (i.e., 7 universities in Colorado/Wyoming Front Range & Carolinas), propensity score matched design, we compare mentoring and persistence outcomes for women in and out of PROGRESS (N = 116). Women in PROGRESS attended an off-site weekend workshop and gained access to a network of volunteer female scientific mentors from on- and off-campus (i.e., university faculty, graduate students, and outside scientific professionals). The results indicate that women in PROGRESS had larger networks of developmental mentoring relationships and were more likely to be mentored by faculty members and peers than matched controls. Mentoring support from a faculty member benefited early-undergraduate women by strengthening their scientific identity and their interest in earth and environmental science career pathways. Further, support from a faculty mentor had a positive indirect impact on women's scientific persistence intentions, through strengthened scientific identity development. These results imply that first- and second- year undergraduate women's mentoring support networks can be enhanced through provision of protégé training and access to more senior women in the sciences willing to provide mentoring support.


Assuntos
Tutoria , Motivação , Estudantes/psicologia , Engenharia/educação , Feminino , Humanos , Matemática/educação , Estudos Prospectivos , Ciência/educação , Estados Unidos , Universidades
19.
J Geophys Res Atmos ; 121(16): 9849-9861, 2016 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-29619286

RESUMO

We use a 0-D photochemical box model and a 3-D global chemistry-climate model, combined with observations from the NOAA Southeast Nexus (SENEX) aircraft campaign, to understand the sources and sinks of glyoxal over the Southeast United States. Box model simulations suggest a large difference in glyoxal production among three isoprene oxidation mechanisms (AM3ST, AM3B, and MCM v3.3.1). These mechanisms are then implemented into a 3-D global chemistry-climate model. Comparison with field observations shows that the average vertical profile of glyoxal is best reproduced by AM3ST with an effective reactive uptake coefficient γglyx of 2 × 10-3, and AM3B without heterogeneous loss of glyoxal. The two mechanisms lead to 0-0.8 µg m-3 secondary organic aerosol (SOA) from glyoxal in the boundary layer of the Southeast U.S. in summer. We consider this to be the lower limit for the contribution of glyoxal to SOA, as other sources of glyoxal other than isoprene are not included in our model. In addition, we find that AM3B shows better agreement on both formaldehyde and the correlation between glyoxal and formaldehyde (RGF = [GLYX]/[HCHO]), resulting from the suppression of δ-isoprene peroxy radicals (δ-ISOPO2). We also find that MCM v3.3.1 may underestimate glyoxal production from isoprene oxidation, in part due to an underestimated yield from the reaction of IEPOX peroxy radicals (IEPOXOO) with HO2. Our work highlights that the gas-phase production of glyoxal represents a large uncertainty in quantifying its contribution to SOA.

20.
Cell Metab ; 22(1): 77-85, 2015 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-26094891

RESUMO

Diabetes results from a reduction of pancreatic ß-cells. Stimulating replication could normalize ß-cell mass. However, adult human ß-cells are recalcitrant to proliferation. We identified osteoprotegerin, a bone-related decoy receptor, as a ß-cell mitogen. Osteoprotegerin was induced by and required for lactogen-mediated rodent ß-cell replication. Osteoprotegerin enhanced ß-cell proliferation in young, aged, and diabetic mice. This resulted in increased ß-cell mass in young mice and significantly delayed hyperglycemia in diabetic mice. Osteoprotegerin stimulated replication of adult human ß-cells, without causing dedifferentiation. Mechanistically, osteoprotegerin induced human and rodent ß-cell replication by modulating CREB and GSK3 pathways, through binding Receptor Activator of NF-κB (RANK) Ligand (RANKL), a brake in ß-cell proliferation. Denosumab, an FDA-approved osteoporosis drug, and RANKL-specific antibody induced human ß-cell proliferation in vitro, and in vivo, in humanized mice. Thus, osteoprotegerin and Denosumab prevent RANKL/RANK interaction to stimulate ß-cell replication, highlighting the potential for repurposing an osteoporosis drug to treat diabetes.


Assuntos
Conservadores da Densidade Óssea/farmacologia , Proliferação de Células/efeitos dos fármacos , Denosumab/farmacologia , Células Secretoras de Insulina/efeitos dos fármacos , NF-kappa B/metabolismo , Osteoprotegerina/metabolismo , Animais , Linhagem Celular , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Humanos , Células Secretoras de Insulina/citologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos SCID , Ligante RANK/antagonistas & inibidores , Ratos , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA