Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Eur J Neurosci ; 53(2): 571-587, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32852090

RESUMO

Although it is known that nociceptive stimulation in the first postnatal week in rats is useful to model preterm pain, resulting in activation of specific brain areas, as assessed in vivo using manganese-enhanced magnetic resonance imaging (MEMRI), little is known about its long-term effects and sex specificity. Here we aimed to investigate whether inflammatory pain induced in male and female adult rats modify the pattern of brain activation between animals subjected or not to neonatal pain. For this, Complete Freund's adjuvant (CFA) was injected into the left hind paw of rat pups on postnatal day 1 (P1) or P8 to induce inflammatory response. During adulthood, CFA-treated and control animals were injected with CFA 1 hr prior MRI. MEMRI has the ability to enhance the contrast of selective brain structures in response to a specific stimulus, as the pain. MEMRI responses were consistent with activation of nociceptive pathways and these responses were reduced in animals treated with CFA on P1, but increased in animals treated on P8, mainly in the female group. In agreement, P8 female group showed exacerbated responses in the thermal nociceptive test. Using MEMRI, we conclude that the natural ability of adult rats to recognize and react to pain exposition is modified by neonatal painful exposition, mainly among females.


Assuntos
Manganês , Dor , Animais , Encéfalo/diagnóstico por imagem , Feminino , Adjuvante de Freund/toxicidade , Inflamação , Imageamento por Ressonância Magnética , Masculino , Manganês/toxicidade , Ratos
2.
Epilepsia ; 53(7): 1225-32, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22642664

RESUMO

PURPOSE: Mossy fiber sprouting (MFS) is a frequent finding following status epilepticus (SE). The present study aimed to test the feasibility of using manganese-enhanced magnetic resonance imaging (MEMRI) to detect MFS in the chronic phase of the well-established pilocarpine (Pilo) rat model of temporal lobe epilepsy (TLE). METHODS: To modulate MFS, cycloheximide (CHX), a protein synthesis inhibitor, was coadministered with Pilo in a subgroup of animals. In vivo MEMRI was performed 3 months after induction of SE and compared to the neo-Timm histologic labeling of zinc mossy fiber terminals in the dentate gyrus (DG). KEY FINDINGS: Chronically epileptic rats displaying MFS as detected by neo-Timm histology had a hyperintense MEMRI signal in the DG, whereas chronically epileptic animals that did not display MFS had minimal MEMRI signal enhancement compared to nonepileptic control animals. A strong correlation (r = 0.81, p < 0.001) was found between MEMRI signal enhancement and MFS. SIGNIFICANCE: This study shows that MEMRI is an attractive noninvasive method for detection of mossy fiber sprouting in vivo and can be used as an evaluation tool in testing therapeutic approaches to manage chronic epilepsy.


Assuntos
Epilepsia/patologia , Hipocampo/patologia , Imageamento por Ressonância Magnética , Manganês , Fibras Musgosas Hipocampais/efeitos dos fármacos , Animais , Anticonvulsivantes/farmacologia , Anticonvulsivantes/uso terapêutico , Cicloeximida/administração & dosagem , Modelos Animais de Doenças , Interações Medicamentosas , Epilepsia/induzido quimicamente , Epilepsia/tratamento farmacológico , Hipocampo/efeitos dos fármacos , Processamento de Imagem Assistida por Computador , Masculino , Fibras Musgosas Hipocampais/patologia , Agonistas Muscarínicos/toxicidade , Pilocarpina/toxicidade , Inibidores da Síntese de Proteínas/administração & dosagem , Ratos , Ratos Wistar , Estatísticas não Paramétricas , Tiopental/farmacologia , Tiopental/uso terapêutico
3.
Front Neurol ; 5: 111, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25071699

RESUMO

Kainic acid (KA) or pilocarpine (PILO) have been used in rats to model human temporal lobe epilepsy (TLE) but the distribution and severity of structural lesions between these two models may differ. Magnetic resonance imaging (MRI) studies have used quantitative measurements of hippocampal T2 (T2HP) relaxation time and volume, but simultaneous comparative results have not been reported yet. The aim of this study was to compare the MRI T2HP and volume with histological data and frequency of seizures in both models. KA- and PILO-treated rats were imaged with a 2 T MRI scanner. T2HP and volume values were correlated with the number of cells, mossy fiber sprouting, and spontaneous recurrent seizures (SRS) frequency over the 9 months following status epilepticus (SE). Compared to controls, KA-treated rats had unaltered T2HP, pronounced reduction in hippocampal volume and concomitant cell reduction in granule cell layer, CA1 and CA3 at 3 months post SE. In contrast, hippocampal volume was unchanged in PILO-treated animals despite detectable increased T2HP and cell loss in granule cell layer, CA1 and CA3. In the following 6 months, MRI hippocampal volume remained stable with increase of T2HP signal in the KA-treated group. The number of CA1 and CA3 cells was smaller than age-matched CTL group. In contrast, PILO group had MRI volumetric reduction accompanied by reduction in the number of CA1 and CA3 cells. In this group, T2HP signal was unaltered at 6 or 9 months after status. Reductions in the number of cells were not progressive in both models. Notably, the SRS frequency was higher in PILO than in the KA model. The volumetry data correlated well with tissue damage in the epileptic brain, suggesting that MRI may be useful for tracking longitudinal hippocampal changes, allowing the assessment of individual variability and disease progression. Our results indicate that the temporal changes in hippocampal morphology are distinct for both models of TLE and that these are not significantly correlated to the frequency of SRS.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA