Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Angew Chem Int Ed Engl ; 62(51): e202309135, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-37672490

RESUMO

Point-of-care (PoC) testing is revolutionizing the healthcare sector improving patient care in daily hospital practice and allowing reaching even remote geographical areas. In the frame of cancer management, the design and validation of PoC enabling the non-invasive, rapid detection of cancer markers is urgently required to implement liquid biopsy in clinical practice. Therefore, focusing on stable blood-based markers with high-specificity, such as microRNAs, is of crucial importance. In this work, we highlight the potential impact of circulating microRNAs detection on cancer management and the crucial role of PoC testing devices, especially for low-income countries. A detailed discussion about the challenges that should be faced to promote the technological transfer and clinical use of these tools has been added, to provide the readers with a complete overview of potentialities and current limitations.


Assuntos
MicroRNAs , Neoplasias , Humanos , Testes Imediatos , Biópsia Líquida , Neoplasias/diagnóstico , Neoplasias/genética , Dispositivos Lab-On-A-Chip , Sistemas Automatizados de Assistência Junto ao Leito
2.
Angew Chem Int Ed Engl ; 62(38): e202305569, 2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37345993

RESUMO

Two binuclear heteroleptic CuI complexes, namely Cu-NIR1 and Cu-NIR2, bearing rigid chelating diphosphines and π-conjugated 2,5-di(pyridin-2-yl)thiazolo[5,4-d]thiazole as the bis-bidentate ligand are presented. The proposed dinuclearization strategy yields a large bathochromic shift of the emission when compared to the mononuclear counterparts (M1-M2) and enables shifting luminescence into the near-infrared (NIR) region in both solution and solid state, showing emission maximum at ca. 750 and 712 nm, respectively. The radiative process is assigned to an excited state with triplet metal-to-ligand charge transfer (3 MLCT) character as demonstrated by in-depth photophysical and computational investigation. Noteworthy, X-ray analysis of the binuclear complexes unravels two interligand π-π-stacking interactions yielding a doubly locked structure that disfavours flattening of the tetrahedral coordination around the CuI centre in the excited state and maintain enhanced NIR luminescence. No such interaction is present in M1-M2. These findings prompt the successful use of Cu-NIR1 and Cu-NIR2 in NIR light-emitting electrochemical cells (LECs), which display electroluminescence maximum up to 756 nm and peak external quantum efficiency (EQE) of 0.43 %. Their suitability for the fabrication of white-emitting LECs is also demonstrated. To the best of our knowledge, these are the first examples of NIR electroluminescent devices based on earth-abundant CuI emitters.

3.
Analyst ; 146(5): 1714-1724, 2021 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-33439175

RESUMO

The anticancer drug imatinib is often involved in therapeutic drug monitoring (TDM) studies aimed at improving the treatment of several forms of leukemia and gastrointestinal stromal tumors (GIST). To further implement the TDM of imatinib in clinical practice, we developed a detection assay by using an ssDNA aptamer, which demonstrated excellent selectivity and was not affected by interference from the components of human plasma samples. The efficient binding of imatinib to the aptamer was demonstrated by means of surface plasmon resonance (SPR) analysis, which allowed the development of a quantitative assay in the concentration range between 400 and 6000 ng mL-1 (0.7-10 µM), where a lower limit of quantification (LLOQ) of 400 ng mL-1 was achieved. The precision of the assay was found to be within 12.0%, whereas the accuracy was in a range between 97.1 and 101.5%. The sample preparation procedure displayed a recovery in the range of 48.8-52.8%. Solid validation data were collected according to the regulatory guidelines and the method was compared with standard analytical techniques, leading to the development of a feasible aptasensor for the TDM of patients administered with imatinib.


Assuntos
Antineoplásicos , Tumores do Estroma Gastrointestinal , Antineoplásicos/uso terapêutico , Monitoramento de Medicamentos , Tumores do Estroma Gastrointestinal/tratamento farmacológico , Humanos , Mesilato de Imatinib , Ressonância de Plasmônio de Superfície
4.
Chemistry ; 26(38): 8407-8416, 2020 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-32430923

RESUMO

We synthesized and characterized a series of dyes built from a spirofluorene or truxene core. The quadrupolar spirofluorene system is the initial building unit for the design and preparation of more complex star-shaped dyes consisting of a truxene core bearing three di- or triphenylamine moieties with or without a thiophene connector. Their photophysical, electrochemical, and electrochemiluminescence (ECL) properties were first investigated in solution. Structure/activity relationships were derived and rationalized by comparing the quadrupolar system and trigonal truxene-core derivatives using computational studies. The photophysical and redox characteristics are drastically tuned by the introduction of a thiophene bridge and electron-donor substituents at their terminal branches. These comparative studies show the essential role of the stability of both radical cations and anions to obtain efficient ECL dyes. The stabilization of the radicals is directly related to the charge delocalization due to the π-conjugation by the thiophene bridge. The brightest ECL is achieved by annihilation and coreactant (benzoyl peroxide) pathways with the blue-emitting truxene dye, which is 2- and 4.5-times greater than that of the quadrupolar compound and reference [Ru(bpy)3 ]2+ emitter, respectively. Such an extensive study on these extended π-conjugated molecules presenting different core structures may guide the design and synthesis of new ECL dyes with a strong efficiency.

5.
Chemistry ; 26(51): 11751-11766, 2020 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-32632987

RESUMO

A novel class of phosphorescent cationic heterobimetallic IrIII /MI complexes, where MI =CuI (4) and AuI (5), is reported. The two metal centers are connected by the hybrid bridging 1,3-dimesityl-5-acetylimidazol-2-ylidene-4-olate (IMesAcac) ligand that combines both a chelating acetylacetonato-like and a monodentate N-heterocyclic carbene site coordinated onto an IrIII and a MI center, respectively. Complexes 4 and 5 have been prepared straightforwardly by a stepwise site-selective metalation with the zwitterionic [(IPr)MI (IMesAcac)] metalloproligand (IPr=1,3-(2,6-diisopropylphenyl)-2H-imidazol-2-ylidene) and they have been fully characterized by spectroscopic, electrochemical, and computational investigation. Complexes 4 and 5 display intense red emission arising from a low-energy excited state that is located onto the "Ir(C^N)" moiety featuring an admixed triplet ligand-centered/metal-to-ligand charge transfer (3 IL/1 MLCT) character. Comparison with the benchmark mononuclear complexes reveals negligible electronic coupling between the two distal metal centers at the electronic ground state. The bimetallic systems display enhanced photophysical properties in comparison with the parental congeners. Noteworthy, similar non-radiative rate constants have been determined along with a two-fold increase of radiative rate, yielding brightly red-emitting cyclometalating IrIII complexes. This finding is ascribed to the increased MLCT character of the emitting state in complexes 4 and 5 due to the smaller energy gap between the 3 IL and 1 MLCT manifolds, which mix via spin-orbit coupling.

6.
Anal Bioanal Chem ; 412(7): 1585-1595, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31982924

RESUMO

In this paper, a fast method for the detection of irinotecan (CPT-11) in plasma samples was investigated. CPT-11 is widely used in a number of chemotherapeutic treatments of several solid tumors. The method is based on the combination of a solid phase extraction and an electrochemical detection step. The extraction of CPT-11 from plasma was performed using solid phase extraction (SPE) columns and acetonitrile as eluent. The procedure included also a cleaning step to eliminate interference due to plasma endogenous compounds and the co-therapeutics 5-fluoroacil (5-FU) and folinic acid (FA). The latter are administered together with CPT-11 in the FOLFIRI regimen. The detection of CPT-11 was performed by differential pulse voltammetry at a glassy carbon electrode (GCE) in basified acetonitrile media. Under these conditions, a well-defined peak due to the oxidation of the tertiary ammine end of CPT-11, also free from interference due to main metabolites, was obtained. Calibration plots showed a good linear response with limit of detection and quantification of 1.10 × 10-7 and 3.74 × 10-7 M, respectively. The suitability of the method proposed here for clinical applications was verified by determining the concentration of CPT-11 in plasma samples of an oncological patient, collected after 30 and 180 min from the infusion of the drug. Graphical abstract.


Assuntos
Técnicas Eletroquímicas/métodos , Irinotecano/sangue , Extração em Fase Sólida/métodos , Inibidores da Topoisomerase I/sangue , Humanos
7.
Sensors (Basel) ; 20(23)2020 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-33260737

RESUMO

Heavy metals ions (HMI), if not properly handled, used and disposed, are a hazard for the ecosystem and pose serious risks for human health. They are counted among the most common environmental pollutants, mainly originating from anthropogenic sources, such as agricultural, industrial and/or domestic effluents, atmospheric emissions, etc. To face this issue, it is necessary not only to determine the origin, distribution and the concentration of HMI but also to rapidly (possibly in real-time) monitor their concentration levels in situ. Therefore, portable, low-cost and high performing analytical tools are urgently needed. Even though in the last decades many analytical tools and methodologies have been designed to this aim, there are still several open challenges. Compared with the traditional analytical techniques, such as atomic absorption/emission spectroscopy, inductively coupled plasma mass spectrometry and/or high-performance liquid chromatography coupled with electrochemical or UV-VIS detectors, bio- and biomimetic electrochemical sensors provide high sensitivity, selectivity and rapid responses within portable and user-friendly devices. In this review, the advances in HMI sensing in the last five years (2016-2020) are addressed. Key examples of bio and biomimetic electrochemical, impedimetric and electrochemiluminescence-based sensors for Hg2+, Cu2+, Pb2+, Cd2+, Cr6+, Zn2+ and Tl+ are described and discussed.


Assuntos
Ecossistema , Metais Pesados , Biomimética , Monitoramento Ambiental , Humanos , Íons , Metais Pesados/análise , Medição de Risco
8.
Angew Chem Int Ed Engl ; 58(50): 18202-18206, 2019 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-31603275

RESUMO

We report the integration of surface plasmon resonance (SPR), cyclic voltammetry and electrochemiluminescence (ECL) responses to survey the interfacial adsorption and energy transfer processes involved in ECL on a plasmonic substrate. It was observed that a Tween 80/tripropylamine nonionic layer formed on the gold electrode of the SPR sensor, while enhancing the ECL emission process, affects the electron transfer process to the luminophore, Ru(bpy)32+ , which in turn has an impact on the plasmon resonance. Concomitantly, the surface plasmon modulated the ECL intensity, which decreased by about 40 %, due to an interaction between the excited state of Ru(bpy)32+ and the plasmon. This occurred only when the plasmon was excited, demonstrating that the optically excited surface plasmon leads to lower plasmon-mediated luminescence and that the plasmon interacts with the excited state of Ru(bpy)32+ within a very thin layer.

9.
Anal Chem ; 90(10): 6012-6019, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29658266

RESUMO

Therapeutic drug monitoring (TDM) is the clinical practice of measuring pharmaceutical drug concentrations in patients' biofluids at designated intervals, thus allowing a close and timely control of their dosage. To date, TDM in oncology can only be performed by trained personnel in centralized laboratories and core facilities employing conventional analytical techniques (e.g., MS). CPT-11 is an antineoplastic drug that inhibits topoisomerase type I, causing cell death, and is widely used in the treatment of colorectal cancer. CPT-11 was also found to directly inhibit acetylcholine esterase (AChE), an enzyme involved in neuromuscular junction. In this work, we describe an enzymatic biosensor, based on AChE and choline oxidase (ChOx), which can quantify CPT-11. ACh (acetylcholine) substrate is converted to choline, which is subsequently metabolized by ChOx to give betaine aldehyde and hydrogen peroxide. The latter one is then oxidized at a suitably polarized platinum electrode, providing a current transient proportional to the amount of ACh. Such an enzymatic process is hampered by CPT-11. The biosensor showed a ∼60% maximal inhibition toward AChE activity in the clinically relevant concentration range 10-10 000 ng/mL of CPT-11 in both simple (phosphate buffer) and complex (fetal bovine serum) matrixes, while its metabolites showed negligible effects. These findings could open new routes toward a real-time TDM in oncology, thus improving the therapeutic treatments and lowering the related costs.


Assuntos
Antineoplásicos/análise , Técnicas Biossensoriais , Neoplasias Colorretais/tratamento farmacológico , Técnicas Eletroquímicas , Irinotecano/análise , Acetilcolinesterase , Oxirredutases do Álcool , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Morte Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Neoplasias Colorretais/patologia , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Irinotecano/metabolismo , Irinotecano/farmacologia , Estrutura Molecular , Relação Estrutura-Atividade
10.
J Am Chem Soc ; 139(5): 2060-2069, 2017 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-28088858

RESUMO

We describe the synthesis, computational analysis, photophysics, electrochemistry and electrochemiluminescence (ECL) of a series of compounds formed of two triphenylamines linked by a fluorene or spirobifluorene bridge. The phenylamine moieties were modified at the para-position of the two external rings by electron-withdrawing or electron-donating substituents. These modifications allowed for fine-tuning of the photoluminescence (PL) and ECL emission from blue to green, with an overall wavelength span of 73 (PL) and 67 (ECL) nm, respectively. For all compounds, we observed a very high PL quantum yield (79-89%) and formation of stable radical ions. The ECL properties were investigated by direct annihilation of the electrogenerated radical anion and radical cation. The radical-ion annihilation process is very efficient and causes an intense greenish-blue ECL emission, easily observable even by naked eye, with quantum yield higher than the standard 9,10-diphenylanthracene. The ECL spectra show one single band that almost matches the PL band. Because the energy of the annihilation reaction is higher than that required to form the singlet excited state, the S-route is considered the favored pathway followed by the ECL process in these molecules. All these features point to this type of molecular system as promising for ECL applications.

11.
Anal Chem ; 88(8): 4174-8, 2016 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-26978720

RESUMO

A family of neutral bis-cyclometalated iridium complexes [Ir(C^N)2(LX)] has been investigated as ECL labels under immunoassay conditions. Among them, the complex based on phenylphenanthridine (pphent) as the C^N ligand, exhibits outstanding performance and it is a candidate to substitute the commercially available Ru-based label in diagnostics.


Assuntos
Técnicas Eletroquímicas , Irídio/química , Luminescência , Compostos Organometálicos/química , Processos Fotoquímicos , Água/química , Imunoensaio , Soluções
12.
Chemistry ; 21(13): 5161-72, 2015 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-25702928

RESUMO

Pt(II) complexes with one bulky, sterically demanding, tertiary phosphite ancillary ligand and a coordinating chromophore are herein presented. The phosphite ligand, tris(2,4-di-tert-butylphenyl) acts as a bidentate ligand coordinating the platinum ion through the central phosphorus atom and a cyclometalating carbon atom of one of the substituents. The two free phenoxy moieties lie above and below the coordination plane, leading to steric hindrance that avoids aggregation and provides solubility in organic solvents. The other two coordination sites on the central metal ion are occupied by a chromophoric ligand, which is responsible for the energy of the luminescent excited state. This separation of functions, on the two coordinated ligands, allows the use of a wider range of luminophores with good luminescent properties, maintaining the control of the intermolecular interactions with the non-chromophoric ligand. Based on this approach we were able to achieve a bright deep blue emission (λ=444 nm, Φem =0.38) from a complex with a tailored ligand, which was then used for the fabrication of an electroluminescent device. In addition commercially available luminophores were also employed to synthesize green emitters.

13.
Langmuir ; 30(27): 8141-51, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-24949655

RESUMO

Understanding the interaction of nanoparticles with cell membranes is a high-priority research area for possible biomedical applications. We describe our findings concerning the interaction of Au144 monolayer-protected clusters (MPCs) with biomimetic membranes and their permeabilizing effect as a function of the transmembrane potential. We synthesized Au144(SCH2CH2Ph)60 and modified the capping monolayer with 8-mercaptooctanoic acid (Au144OctA) or thiolated trichogin (Au144TCG), a channel-forming peptide. The interactions of these MPCs with mercury-supported lipid mono- and bilayers were studied with a combination of electrochemical techniques specifically sensitive to changes in the properties of biomimetic membranes and/or charge-transfer phenomena. Permeabilization effects were evaluated through the influence of MPC uptake on the reduction of cadmium(II) ions. The nature and properties of the Au144 capping molecules play a crucial role in controlling how MPCs interact with membranes. The native MPC causes a small effect, whereas both Au144OctA and Au144TCG interact significantly with the lipid monolayer and show electroactivity. Whereas Au144OctA penetrates the membrane, Au144TCG pierces the membrane with its peptide appendage while remaining outside of it. Both clusters promote Cd(2+) reduction but with apparently different mechanisms. Because of the different way that they interact with the membrane, Au144OctA is more effective in Cd(2+) reduction when interacting with the lipid bilayer and Au144TCG performs particularly well when piercing the lipid monolayer.


Assuntos
Materiais Biomiméticos/química , Ouro/química , Bicamadas Lipídicas/química , Membranas Artificiais , Compostos Organometálicos/química , Materiais Biomiméticos/síntese química , Cádmio/química , Técnicas Eletroquímicas , Bicamadas Lipídicas/síntese química , Compostos Organometálicos/síntese química , Oxirredução
14.
Inorg Chem ; 53(20): 10944-51, 2014 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-25272317

RESUMO

The synthesis and the photophysics of three dinuclear copper(I) complexes containing bis(bidentate)phosphine ligands are described. The steric constraint imposed by tetrakis(di(2-methoxyphenyl)phosphanyl)cyclobutane) (o-MeO-dppcb) in combination with 2,9-dimethyl-1,10-phenanthroline in one of the complexes leads to interesting photophysical properties. The compound shows an intense emission at room temperature in deoxygenated acetonitrile solution (Φ = 49%) and a long excited-state lifetime (13.8 µs). Interestingly, at low temperature, 77 K, the emission maximum shifts to lower energy, and the excited-state lifetime increases. This observation leads to the conclusion that a mixing between the excited triplet and singlet states is possible and that the degree of mixing and population of state strongly depends on temperature, as the energy difference is quite small. The electroluminescent properties of this compound were therefore tested in light-emitting electrochemical cells (LEECs), proving that the bright emission can also be obtained by electrically driven population of the singlet state.


Assuntos
Cobre/química , Luminescência , Substâncias Luminescentes/química , Compostos Organometálicos/química , Fosfinas/química , Cristalografia por Raios X , Ligantes , Substâncias Luminescentes/síntese química , Modelos Moleculares , Conformação Molecular , Compostos Organometálicos/síntese química , Espectrofotometria Ultravioleta , Temperatura
15.
ChemistryOpen ; 13(7): e202300203, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38333968

RESUMO

The growth of liquid biopsy, i. e., the possibility of obtaining health information by analysing circulating species (nucleic acids, cells, proteins, and vesicles) in peripheric biofluids, is pushing the field of sensors and biosensors beyond the limit to provide decentralised solutions for nonspecialists. In particular, among all the circulating species that can be adopted in managing cancer evolution, both for diagnostic and prognostic applications, microRNAs have been highly studied and detected. The development of electrochemical devices is particularly relevant for liquid biopsy purposes, and the screen-printed electrodes (SPEs) represent one of the building blocks for producing novel portable devices. In this work, we have taken miR-2115-3p as model target (it is related to lung cancer), and we have developed a biosensor by exploiting the use of a complementary DNA probe modified with methylene blue as redox mediator. In particular, the chosen sensing architecture was applied to serum measurements of the selected miRNA, obtaining a detection limit within the low nanomolar range; in addition, various platforms were interrogated, namely commercial and hand-made SPEs, with the aim of providing the reader with some insights about the optimal platform to be used by considering both the cost and the analytical performance.


Assuntos
Técnicas Biossensoriais , Técnicas Eletroquímicas , Eletrodos , MicroRNAs , Humanos , MicroRNAs/sangue , Biópsia Líquida , Técnicas Eletroquímicas/métodos , Neoplasias/diagnóstico , Limite de Detecção , Neoplasias Pulmonares/diagnóstico , Azul de Metileno/química
16.
Dalton Trans ; 53(14): 6445-6450, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38511259

RESUMO

A neutral hexacoordinate Si(IV) complex containing two tridentate N-heterocyclic carbene ligands is synthesised and characterized by X-ray crystallography, optical spectroscopy, electrochemistry and computational methods. The stable compound exhibits remarkable deep-blue photoluminescence particularly in the solid state, which enables its use as an electroluminescent material in organic light-emitting diodes.

17.
Small Methods ; : e2301541, 2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38368269

RESUMO

Environmental pollution is a complex problem that threatens the health and life of animal and plant ecosystems on the planet. In this respect, the scientific community faces increasingly challenging tasks in designing novel materials with beneficial properties to address this issue. This study describes a simple yet effective synthetic protocol to obtain nickel hexacyanoferrate (Ni-HCF) nanocubes as a suitable photocatalyst, which can enable an efficient photodegradation of hazardous anthropogenic organic contaminants in water, such as antibiotics. Ni-HCF nanocubes are fully characterized and their optical and electrochemical properties are investigated. Preliminary tests are also carried out to photocatalytically remove metronidazole (MDZ), an antibiotic that is difficult to degrade and has become a common contaminant as it is widely used to treat infections caused by anaerobic microorganisms. Under simulated solar light, Ni-HCF displays substantial photocatalytic activity, degrading 94.3% of MDZ in 6 h. The remarkable performance of Ni-HCF nanocubes is attributeto a higher ability to separate charge carriers and to a lower resistance toward charge transfer, as confirmed by the electrochemical characterization. These achievements highlight the possibility of combining the performance of earth-abundant catalysts with a renewable energy source for environmental remediation, thus meeting the requirements for sustainable development.

18.
Inorg Chem ; 52(4): 1812-24, 2013 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-23383706

RESUMO

A series of blue and blue-green emitters based on neutral bis- and tris-cyclometalated Ir(III) complexes with 1-benzyl-4-(2,6-difluorophenyl)-1H-1,2,3-triazole (dfptrBn) as cyclometalating ligand is reported. The bis-cyclometalated complexes of the type [Ir(dfptrBn)(2)(L(^)X)] with different ancillary ligands, L(^)X = picolinate (pic) (2) or 2-(5-(perfluorophenyl)-2H-1,2,4-triazol-3-yl)pyridine (pytrF(5)) (3), are described and their photophysical properties compared with the analogous complexes containing the archetypal 2-(2,4-difluorophenyl)pyridinato (dfppy) as cyclometaled ligand (C(^)N). Complex 2 exhibits a marked solvatochromic behavior, from 475 nm in toluene to 534 nm in formamide, due to the strong MLCT character of its emissive excited state. Complex 3 displays a true-blue emission, narrower in the visible part than FIrpic. In addition, the homoleptic complex [Ir(dfprBn)(3)] (4) and the heteroleptic compounds with mixed arylpyridine/aryltriazole ligands, [Ir(dfptrBn)(2)(C(^)N)] (C(^)N = 2-phenylpyridinato (ppy) (5) or dfppy (6)), have been synthesized and fully characterized. The facial (fac) complex fac-4 is emissive at 77 K showing a deep-blue emission, but it is not luminescent in solution at room temperature similarly to their phenylpyrazole counterparts. However, the fac isomers, fac-5 and fac-6, are highly emissive in solution and thin films, reaching emission quantum yields of 76%, with emission colors in the blue to blue-green region. The photophysical properties for all complexes have been rationalized by means of quantum-chemical calculations. In addition, we constructed electroluminescent devices, organic light-emitting diodes (OLEDs) by sublimation of fac-6, and by solution processed polymer-based devices (PLEDs) using complexes fac-5 or fac-6 as dopants.


Assuntos
Técnicas Eletroquímicas , Irídio/química , Luminescência , Compostos Organometálicos/química , Compostos Organometálicos/síntese química , Triazóis/química , Ligantes , Modelos Moleculares , Estrutura Molecular , Teoria Quântica
19.
J Am Chem Soc ; 134(37): 15402-9, 2012 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-22876989

RESUMO

The spectroscopic and electrochemical behavior as well as electrogenerated chemiluminescence (ECL) of a series of donor-π-donor derivatives bearing triphenylamine groups as donor connected to a fluorene, 2,7-bis-(4-(N,N-diphenylamino)phen-1-yl)-9,9'-dimethylfluorene (1), or spirobifluorene core, 2,7-bis-(4-(N,N-diphenylamino)phen-1-yl)-9,9'-spirobifluorene (2) and 2,2',7,7'-tetrakis(4-(N,N-diphenylamino)phen-1-yl)-9,9'-spirobifluorene (3), were investigated. Besides a high photoluminescence (PL) quantum yield in solution (between 81 and 87%), an efficient radical ions annihilation process induces intense greenish blue ECL emission that could be seen with the naked eye. Only the tetrasubstituted spirobifluorene derivative (compound 3) shows weak ECL obtained by a direct annihilation mechanism. Because the energy of the annihilation reaction is higher than the energy required to form the singlet excited state, the S-route could be considered the pathway followed by the ECL process in these molecules. The ECL emissions recorded by direct ion-ion annihilation show two bands compared to the single structureless PL band. The ECL spectra obtained by a coreactant approach using benzoylperoxide as a coreagent show no differences relative to that produced by annihilation, except for an increasing of ECL intensity for all compounds.

20.
Biosensors (Basel) ; 12(5)2022 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-35624597

RESUMO

Instrumental laboratory methods for biochemical and chemical analyses have reached a high level of reliability with excellent sensitivity and specificity [...].


Assuntos
Técnicas Biossensoriais , Vírus , Técnicas Biossensoriais/métodos , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA