Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Dairy Sci ; 107(2): 883-901, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37730174

RESUMO

Experiments were conducted over a 3-yr period to evaluate the effects of bacterial inoculants on the fermentation profile and aerobic stability of whole-plant corn silage (WPC), snaplage (SNA), and high-moisture corn (HMC). Whole-plant corn was inoculated with Lentilactobacillus buchneri PJB1 in combination with Lactiplantibacillus plantarum MTD1 or with Lpb. plantarum alone (experiments 1 and 2). Snaplage (experiment 3) and HMC (experiments 4 and 5) were inoculated with Len. buchneri in combination with Lpb. plantarum or with Len. buchneri alone. After inoculation, the feedstuffs were ensiled in 7.57-L silos and stored at 21 ± 2°C for 30 or 90 d. In experiment 5, silage was subjected to air stress for 2 h every 2 wk through 42 d and then for 2 h/wk until 90 d and had samples analyzed for their bacterial community composition by metagenomics. Overall, in all experiments, silages inoculated with Len. buchneri alone or in combination with Lpb. plantarum had more acetic acid and 1,2-propanediol and fewer yeasts than uninoculated silages. After 30 d of ensiling, inoculation with Len. buchneri alone or in combination with Lpb. plantarum did not affect the aerobic stability of SNA, but it slightly increased the stability of WPC and markedly improved the stability of HMC. After 90 d of ensiling, inoculation with Len. buchneri alone or in combination with Lpb. plantarum markedly improved the aerobic stability of WPC, SNA, and HMC. In experiment 5, inoculation increased the relative abundance (RA) of Lactobacillaceae and reduced the RA of Enterobacteriaceae and Leuconostocaceae in HMC at 30 and 90 d and the RA of Clostridiaceae in non-air-stressed HMC at 90 d. Air-stressed HMC inoculated with Len. buchneri had less lactic acid, more acetic acid and 1,2-propanediol, and markedly greater aerobic stability than uninoculated air-stressed HMC at 90 d. In conclusion, inoculation with Len. buchneri PJB1 alone or in combination with Lpb. plantarum MTD1 increased the production of acetic acid and 1,2-propanediol, inhibited yeasts development, and improved the aerobic stability of WPC, SNA, and HMC. In HMC, inoculation markedly improved aerobic stability as soon as after 30 d of ensiling, and after 90 d, inoculation improved stability even under air stress conditions.


Assuntos
Lactobacillus plantarum , Lactobacillus , Silagem , Animais , Silagem/análise , Zea mays/microbiologia , Propilenoglicol , Aerobiose , Leveduras , Ácido Acético , Fermentação
2.
J Dairy Sci ; 101(7): 5949-5960, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29655557

RESUMO

We evaluated the effectiveness of an additive comprising sodium benzoate, potassium sorbate, and sodium nitrite (SSL) as active ingredients for its ability to improve the aerobic stability of corn silages made in North America. In experiment 1, treatment with SSL (1.5 and 2.0 L/t) on whole-plant corn (WPC) was compared with treatment with an additive containing buffered propionic acid and citric acid (BPA; 2 L/t) on corn harvested at 32 and 38% dry matter and ensiled for 120 d. Silage treated with BPA was higher in ammonia-N and propionic acid relative to other treatments. Treatments with all of the additives had numerically, but not statistically, fewer yeasts compared with untreated silage. Both application rates of SSL resulted in lower concentrations of ethanol compared with untreated and BPA silages. Treatment with BPA improved the aerobic stability of silages compared with untreated silage, but the effect from SSL was markedly greater. In experiment 2, WPC was untreated or treated with 2 or 3 L of SSL/t or a microbial inoculant containing Enterococcus faecium M74, Lactobacillus plantarum CH6072, and Lactobacillus buchneri LN1819 (final total lactic acid bacteria application rate of 150,000 cfu/g of fresh forage). Silages were air stressed for 24 h at 28 and 42 d of storage and ensiled for 49 d before opening. Inoculation had no effect on acid end products, ethanol, number of yeasts, or aerobic stability compared with other treatments. Treatment with SSL decreased the amount of ethanol, had no effect on number of yeasts, and improved aerobic stability in a dose-dependent manner compared with other treatments. In experiment 3, WPC was untreated or treated with 2 L of SSL/t and ensiled for 5, 15, and 30 d. Treatment with SSL resulted in silage with fewer yeasts and lower concentrations of ethanol after all times of ensiling compared with untreated silage. In addition, SSL improved aerobic stability after each period of ensiling, but the effect was more at 15 and 30 d compared with 5 d of storage. Treating WPC with SSL can improve the aerobic stability of corn silage made in North America, and the effect can be observed as soon as 5 d after ensiling.


Assuntos
Fermentação , Silagem , Benzoato de Sódio/administração & dosagem , Nitrito de Sódio/administração & dosagem , Ácido Sórbico/administração & dosagem , Aerobiose , Animais , Sódio , Zea mays
3.
J Anim Sci ; 98(8)2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32756961

RESUMO

We evaluated the effects of a chemical additive on the microbial communities, fermentation profile, and aerobic stability of whole-plant corn silage with or without air stress during storage. Whole-plant corn was either untreated or treated with a chemical additive containing sodium benzoate, potassium sorbate, and sodium nitrite at 2 or 3 liters/t of fresh forage weight. Ten individually treated and replicated silos (7.5 liters) were made for each treatment. Half of the silos remained sealed throughout a 63-d storage period, and the other half was subjected to air stress for 2 h/wk. The composition of the bacterial and fungal communities of fresh forage and silages untreated or treated with 2 liters/t of fresh forage weight was analyzed by Illumina Miseq sequencing. Treated silage had greater (P < 0.05) aerobic stability than untreated, even when subjected to air stress during storage, but the numbers of yeasts culturable on selective agar were not affected. However, the additive reduced the relative abundance (RA) of the lactating-assimilating yeast Candida tropicalis (P < 0.01). In air-stressed silages, untreated silage had a greater (P < 0.05) RA of Pichia kudriavzevii (also a lactate assimilator) than treated silage, whereas treated silage was dominated by Candida humilis, which is usually unable to assimilate lactate or assimilates it slowly. The additive improved the aerobic stability by specifically preventing the dominance of yeast species that can consume lactate and initiate aerobic spoilage. To the best of our knowledge, this is the first work that identifies the specific action of this additive on shifting the microbial communities in corn silage.


Assuntos
Aditivos Alimentares/farmacologia , Microbiota/efeitos dos fármacos , Benzoato de Sódio/farmacologia , Nitrito de Sódio/farmacologia , Ácido Sórbico/farmacologia , Animais , Fermentação , Aditivos Alimentares/administração & dosagem , Aditivos Alimentares/química , Silagem/análise , Benzoato de Sódio/administração & dosagem , Benzoato de Sódio/química , Nitrito de Sódio/administração & dosagem , Nitrito de Sódio/química , Ácido Sórbico/administração & dosagem , Ácido Sórbico/química , Zea mays/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA