Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Biol Chem ; 286(20): 17934-44, 2011 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-21317286

RESUMO

BAD (Bcl-2 antagonist of cell death) belongs to the proapoptotic BH3-only subfamily of Bcl-2 proteins. Physiological activity of BAD is highly controlled by phosphorylation. To further analyze the regulation of BAD function, we investigated the role of recently identified phosphorylation sites on BAD-mediated apoptosis. We found that in contrast to the N-terminal phosphorylation sites, the serines 124 and 134 act in an antiapoptotic manner because the replacement by alanine led to enhanced cell death. Our results further indicate that RAF kinases represent, besides PAK1, BAD serine 134 phosphorylating kinases. Importantly, in the presence of wild type BAD, co-expression of survival kinases, such as RAF and PAK1, leads to a strongly increased proliferation, whereas substitution of serine 134 by alanine abolishes this process. Furthermore, we identified BAD serine 134 to be strongly involved in survival signaling of B-RAF-V600E-containing tumor cells and found that phosphorylation of BAD at this residue is critical for efficient proliferation in these cells. Collectively, our findings provide new insights into the regulation of BAD function by phosphorylation and its role in cancer signaling.


Assuntos
Apoptose , Proliferação de Células , Sistema de Sinalização das MAP Quinases , Neoplasias/metabolismo , Proteínas Proto-Oncogênicas B-raf/metabolismo , Proteína de Morte Celular Associada a bcl/metabolismo , Substituição de Aminoácidos , Sobrevivência Celular/genética , Células HEK293 , Células HeLa , Humanos , Mutação de Sentido Incorreto , Neoplasias/genética , Fosforilação , Proteínas Proto-Oncogênicas B-raf/genética , Proteína de Morte Celular Associada a bcl/genética , Quinases Ativadas por p21/genética , Quinases Ativadas por p21/metabolismo
2.
J Biol Chem ; 286(18): 16491-503, 2011 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-21454547

RESUMO

The serine/threonine kinase RAF is a central component of the MAPK cascade. Regulation of RAF activity is highly complex and involves recruitment to membranes and association with Ras and scaffold proteins as well as multiple phosphorylation and dephosphorylation events. Previously, we identified by molecular modeling an interaction between the N-region and the RKTR motif of the kinase domain in RAF and assigned a new function to this tetrapeptide segment. Here we found that a single substitution of each basic residue within the RKTR motif inhibited catalytic activity of all three RAF isoforms. However, the inhibition and phosphorylation pattern of C-RAF and A-RAF differed from B-RAF. Furthermore, substitution of the first arginine led to hyperphosphorylation and accumulation of A-RAF and C-RAF in plasma membrane fraction, indicating that this residue interferes with the recycling process of A-RAF and C-RAF but not B-RAF. In contrast, all RAF isoforms behave similarly with respect to the RKTR motif-dependent dimerization. The exchange of the second arginine led to exceedingly increased dimerization as long as one of the protomers was not mutated, suggesting that substitution of this residue with alanine may result in similar a structural rearrangement of the RAF kinase domain, as has been found for the C-RAF kinase domain co-crystallized with a dimerization-stabilizing RAF inhibitor. In summary, we provide evidence that each of the basic residues within the RKTR motif is indispensable for correct RAF function.


Assuntos
Membrana Celular/enzimologia , Mutação de Sentido Incorreto , Multimerização Proteica/fisiologia , Quinases raf/metabolismo , Motivos de Aminoácidos , Substituição de Aminoácidos , Animais , Células COS , Membrana Celular/genética , Chlorocebus aethiops , Humanos , Estrutura Terciária de Proteína , Quinases raf/genética
3.
Biochim Biophys Acta ; 1810(2): 162-9, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21081150

RESUMO

BACKGROUND: BAD protein (Bcl-2 antagonist of cell death) belongs to the BH3-only subfamily of proapoptotic proteins and is proposed to function as the sentinel of the cellular health status. Physiological activity of BAD is regulated by phosphorylation, association with 14-3-3 proteins, binding to membrane lipids and pore formation. Since the functional role of the BAD C-terminal part has not been considered so far, we have investigated here the interplay of the structure and function of this region. METHODS: The structure of the regulatory C-terminal part of human BAD was analyzed by CD spectroscopy. The channel-forming activity of full-length BAD and BAD peptides was carried out by lipid bilayer measurements. Interactions between proteins and peptides were monitored by the surface plasmon resonance technique. In aqueous solution, C-terminal part of BAD exhibits a well-ordered structure and stable conformation. In a lipid environment, the helical propensity considerably increases. The interaction of the C-terminal segment of BAD with the isolated BH3 domain results in the formation of permanently open pores whereby the phosphorylation of serine 118 within the BH3 domain is necessary for effective pore formation. In contrast, phosphorylation of serine 99 in combination with 14-3-3 association suppresses formation of channels. C-terminal part of BAD controls BAD function by structural transitions, lipid binding and phosphorylation. Conformational changes of this region upon membrane interaction in conjunction with phosphorylation of the BH3 domain suggest a novel mechanism for regulation of BAD. GENERAL SIGNIFICANCE: Multiple signaling pathways mediate inhibition and activation of cell death via BAD.


Assuntos
Bicamadas Lipídicas/química , Conformação Proteica , Estrutura Terciária de Proteína , Proteína de Morte Celular Associada a bcl/química , Proteínas 14-3-3/química , Proteínas 14-3-3/genética , Proteínas 14-3-3/metabolismo , Sequência de Aminoácidos , Dicroísmo Circular , Glutationa Transferase/genética , Glutationa Transferase/metabolismo , Humanos , Bicamadas Lipídicas/metabolismo , Dados de Sequência Molecular , Peptídeos/química , Peptídeos/metabolismo , Fosforilação , Ligação Proteica , Estrutura Secundária de Proteína , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Ressonância de Plasmônio de Superfície , Água/química , Proteína de Morte Celular Associada a bcl/genética , Proteína de Morte Celular Associada a bcl/metabolismo
4.
J Biol Chem ; 284(41): 28004-28020, 2009 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-19667065

RESUMO

BAD is a proapoptotic member of the Bcl-2 protein family that is regulated by phosphorylation in response to survival factors. Although much attention has been devoted to the identification of phosphorylation sites in murine BAD, little data are available with respect to phosphorylation of human BAD protein. Using mass spectrometry, we identified here besides the established phosphorylation sites at serines 75, 99, and 118 several novel in vivo phosphorylation sites within human BAD (serines 25, 32/34, 97, and 124). Furthermore, we investigated the quantitative contribution of BAD targeting kinases in phosphorylating serine residues 75, 99, and 118. Our results indicate that RAF kinases represent, besides protein kinase A, PAK, and Akt/protein kinase B, in vivo BAD-phosphorylating kinases. RAF-induced phosphorylation of BAD was reduced to control levels using the RAF inhibitor BAY 43-9006. This phosphorylation was not prevented by MEK inhibitors. Consistently, expression of constitutively active RAF suppressed apoptosis induced by BAD and the inhibition of colony formation caused by BAD could be prevented by RAF. In addition, using the surface plasmon resonance technique, we analyzed the direct consequences of BAD phosphorylation by RAF with respect to association with 14-3-3 and Bcl-2/Bcl-X(L) proteins. Phosphorylation of BAD by active RAF promotes 14-3-3 protein association, in which the phosphoserine 99 represented the major binding site. Finally, we show here that BAD forms channels in planar bilayer membranes in vitro. This pore-forming capacity was dependent on phosphorylation status and interaction with 14-3-3 proteins. Collectively, our findings provide new insights into the regulation of BAD function by phosphorylation.


Assuntos
Canais Iônicos/química , Canais Iônicos/metabolismo , Proteína de Morte Celular Associada a bcl/química , Proteína de Morte Celular Associada a bcl/metabolismo , Proteínas 14-3-3/genética , Proteínas 14-3-3/metabolismo , Sequência de Aminoácidos , Animais , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Humanos , Canais Iônicos/genética , Bicamadas Lipídicas/metabolismo , Espectrometria de Massas , Camundongos , Dados de Sequência Molecular , Células NIH 3T3 , Peptídeos/química , Peptídeos/genética , Peptídeos/metabolismo , Fosforilação , Ligação Proteica , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Alinhamento de Sequência , Proteína de Morte Celular Associada a bcl/genética , Proteína bcl-X/genética , Proteína bcl-X/metabolismo , Quinases Ativadas por p21/metabolismo , Quinases raf/genética , Quinases raf/metabolismo
5.
Mol Cell Biol ; 30(19): 4698-711, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20679480

RESUMO

The Ras-RAF-mitogen-activated protein kinase (Ras-RAF-MAPK) pathway is overactive in many cancers and in some developmental disorders. In one of those disorders, namely, Noonan syndrome, nine activating C-RAF mutations cluster around Ser(259), a regulatory site for inhibition by 14-3-3 proteins. We show that these mutations impair binding of 14-3-3 proteins to C-RAF and alter its subcellular localization by promoting Ras-mediated plasma membrane recruitment of C-RAF. By presenting biophysical binding data, the 14-3-3/C-RAFpS(259) crystal structure, and cellular analyses, we indicate a mechanistic link between a well-described human developmental disorder and the impairment of a 14-3-3/target protein interaction. As a broader implication of these findings, modulating the C-RAFSer(259)/14-3-3 protein-protein interaction with a stabilizing small molecule may yield a novel potential approach for treatment of diseases resulting from an overactive Ras-RAF-MAPK pathway.


Assuntos
Proteínas 14-3-3/metabolismo , Proteínas Proto-Oncogênicas c-raf/metabolismo , Transdução de Sinais , Proteínas ras/metabolismo , Proteínas 14-3-3/química , Proteínas 14-3-3/genética , Animais , Sítios de Ligação/genética , Linhagem Celular , Chlorocebus aethiops , Cristalização , Cristalografia por Raios X , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Cinética , Microscopia Confocal , Modelos Moleculares , Mutação , Síndrome de Noonan/genética , Síndrome de Noonan/metabolismo , Fosforilação , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Proto-Oncogênicas c-raf/química , Proteínas Proto-Oncogênicas c-raf/genética , Serina/genética , Serina/metabolismo , Transfecção , Proteínas ras/genética
6.
J Plant Physiol ; 166(10): 1057-68, 2009 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-19261356

RESUMO

Senescence of tobacco leaves is distributed non-uniformly over a leaf blade. While photosynthetic competence and expression of photosynthesis-associated genes decline in interveinal areas of the leaf lamina with advancing age of the leaf, they are maintained at high levels in the tissue surrounding the veins. In contrast, expression of senescence-associated genes (SAG) was enhanced in both areas of the leaf blade. Accumulation of hydrogen peroxide was shown to precede the phase of senescence initiation in the veinal tissue. In the interveinal tissue, the level of hydrogen peroxide was increased with senescence progression and paralleled by an increase in the level of superoxide anions. It is hypothesized that the spatial differences in superoxide anions are important for the non-uniform down-regulation of photosynthesis-associated genes (PAG), while hydrogen peroxide is responsible for up-regulation of SAG.


Assuntos
Senescência Celular/fisiologia , Nicotiana/metabolismo , Folhas de Planta/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Catalase/metabolismo , Senescência Celular/genética , Eletroforese em Gel de Poliacrilamida , Regulação da Expressão Gênica no Desenvolvimento/genética , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Peróxido de Hidrogênio/metabolismo , Immunoblotting , Fotossíntese/genética , Fotossíntese/fisiologia , Folhas de Planta/crescimento & desenvolvimento , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Superóxidos/metabolismo , Nicotiana/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA