Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
J Am Chem Soc ; 146(13): 8895-8903, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38511265

RESUMO

Actin is one of the most abundant proteins in eukaryotic cells and is a key component of the cytoskeleton. A range of small molecules has emerged that interfere with actin dynamics by either binding to polymeric F-actin or monomeric G-actin to stabilize or destabilize filaments or prevent their formation and growth, respectively. Among these, the latrunculins, which bind to G-actin and affect polymerization, are widely used as tools to investigate actin-dependent cellular processes. Here, we report a photoswitchable version of latrunculin, termed opto-latrunculin (OptoLat), which binds to G-actin in a light-dependent fashion and affords optical control over actin polymerization. OptoLat can be activated with 390-490 nm pulsed light and rapidly relaxes to its inactive form in the dark. Light activated OptoLat induced depolymerization of F-actin networks in oligodendrocytes and budding yeast, as shown by fluorescence microscopy. Subcellular control of actin dynamics in human cancer cell lines was demonstrated via live cell imaging. Light-activated OptoLat also reduced microglia surveillance in organotypic mouse brain slices while ramification was not affected. Incubation in the dark did not alter the structural and functional integrity of the microglia. Together, our data demonstrate that OptoLat is a useful tool for the elucidation of G-actin dependent dynamic processes in cells and tissues.


Assuntos
Citoesqueleto de Actina , Actinas , Animais , Camundongos , Humanos , Actinas/química , Citoesqueleto de Actina/metabolismo , Citoesqueleto/metabolismo , Linhagem Celular , Microtúbulos/metabolismo
2.
IUBMB Life ; 76(2): 72-87, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37731280

RESUMO

Mitochondria are essential for normal cellular function and have emerged as key aging determinants. Indeed, defects in mitochondrial function have been linked to cardiovascular, skeletal muscle and neurodegenerative diseases, premature aging, and age-linked diseases. Here, we describe mechanisms for mitochondrial protein and organelle quality control. These surveillance mechanisms mediate repair or degradation of damaged or mistargeted mitochondrial proteins, segregate mitochondria based on their functional state during asymmetric cell division, and modulate cellular fitness, the response to stress, and lifespan control in yeast and other eukaryotes.


Assuntos
Proteínas Mitocondriais , Saccharomycetales , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Saccharomycetales/genética , Saccharomycetales/metabolismo , Mitocôndrias/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Controle de Qualidade , Espécies Reativas de Oxigênio/metabolismo
3.
FEMS Yeast Res ; 14(8): 1133-46, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25263578

RESUMO

Aging determinants are asymmetrically distributed during cell division in S. cerevisiae, which leads to production of an immaculate, age-free daughter cell. During this process, damaged components are sequestered and retained in the mother cell, and higher functioning organelles and rejuvenating factors are transported to and/or enriched in the bud. Here, we will describe the key quality control mechanisms in budding yeast that contribute to asymmetric cell division of aging determinants including mitochondria, endoplasmic reticulum (ER), vacuoles, extrachromosomal rDNA circles (ERCs), and protein aggregates.


Assuntos
Divisão Celular Assimétrica , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/fisiologia , Transporte Biológico , Organelas/metabolismo
4.
FEMS Yeast Res ; 13(7): 706-10, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24020807

RESUMO

The Saccharomyces cerevisiae strain CBS6412 has been shown to be able to grow in synthetic medium containing glycerol as the sole carbon source, conditions under which laboratory strains such as CEN.PK and S288c cannot grow. Nonetheless, this strain exhibits a lag phase of c. 30-40 h following transition to glycerol medium. As mitochondria play a critical role in the dissimilation of the respiratory carbon source glycerol, we investigated mitochondrial function and dynamics throughout the lag phase using mitochondria-targeted roGFP, a redox-sensitive GFP variant. We found that following transition to glycerol medium, mitochondria become more oxidizing, accumulate near the bud neck, and exhibit decreased inheritance into daughter cells. Directly preceding entry into exponential growth phase, mitochondria become more reducing, mitochondrial accumulations at the bud neck decrease, and inheritance of mitochondria into daughter cells is restored.


Assuntos
Divisão Celular , Glicerol/metabolismo , Mitocôndrias/fisiologia , Saccharomyces cerevisiae/fisiologia , Carbono/metabolismo , Meios de Cultura/química , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/crescimento & desenvolvimento
5.
J Vis Exp ; (196)2023 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-37335116

RESUMO

Mitochondrial dysfunction, or functional alteration, is found in many diseases and conditions, including neurodegenerative and musculoskeletal disorders, cancer, and normal aging. Here, an approach is described to assess mitochondrial function in living yeast cells at cellular and subcellular resolutions using a genetically encoded, minimally invasive, ratiometric biosensor. The biosensor, mitochondria-targeted HyPer7 (mtHyPer7), detects hydrogen peroxide (H2O2) in mitochondria. It consists of a mitochondrial signal sequence fused to a circularly permuted fluorescent protein and the H2O2-responsive domain of a bacterial OxyR protein. The biosensor is generated and integrated into the yeast genome using a CRISPR-Cas9 marker-free system, for more consistent expression compared to plasmid-borne constructs. mtHyPer7 is quantitatively targeted to mitochondria, has no detectable effect on yeast growth rate or mitochondrial morphology, and provides a quantitative readout for mitochondrial H2O2 under normal growth conditions and upon exposure to oxidative stress. This protocol explains how to optimize imaging conditions using a spinning-disk confocal microscope system and perform quantitative analysis using freely available software. These tools make it possible to collect rich spatiotemporal information on mitochondria both within cells and among cells in a population. Moreover, the workflow described here can be used to validate other biosensors.


Assuntos
Técnicas Biossensoriais , Peróxidos , Peróxidos/metabolismo , Peróxido de Hidrogênio/metabolismo , Saccharomyces cerevisiae/metabolismo , Mitocôndrias/metabolismo , Proteínas de Bactérias/metabolismo , Técnicas Biossensoriais/métodos
6.
bioRxiv ; 2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37502978

RESUMO

Actin is one of the most abundant proteins in eukaryotic cells and a key component of the cytoskeleton. A range of small molecules have emerged that interfere with actin dynamics by either binding to polymeric F-actin or monomeric G-actin to stabilize or destabilize filaments or prevent their formation and growth, respectively. Amongst these, the latrunculins, which bind to G-actin and affect polymerization, are widely used as tools to investigate actin-dependent cellular processes. Here, we report a photoswitchable version of latrunculin, termed opto-latrunculin (OptoLat), which binds to G-actin in a light-dependent fashion and affords optical control over actin polymerization. OptoLat can be activated with 390 - 490 nm pulsed light and rapidly relaxes to the inactive form in the dark. Light activated OptoLat induced depolymerization of F-actin networks in oligodendrocytes and budding yeast, as shown by fluorescence microscopy. Subcellular control of actin dynamics in human cancer cell lines was demonstrated by live cell imaging. Light-activated OptoLat also reduced microglia surveillance in organotypic mouse brain slices while ramification was not affected. Incubation in the dark did not alter the structural and functional integrity of microglia. Together, our data demonstrate that OptoLat is a useful tool for the elucidation of G-actin dependent dynamic processes in cells and tissues.

7.
J Cell Biol ; 176(2): 197-207, 2007 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-17210948

RESUMO

Puf3p binds preferentially to messenger RNAs (mRNAs) for nuclear-encoded mitochondrial proteins. We find that Puf3p localizes to the cytosolic face of the mitochondrial outer membrane. Overexpression of PUF3 results in reduced mitochondrial respiratory activity and reduced levels of Pet123p, a protein encoded by a Puf3p-binding mRNA. Puf3p levels are reduced during the diauxic shift and growth on a nonfermentable carbon source, conditions that stimulate mitochondrial biogenesis. These findings support a role for Puf3p in mitochondrial biogenesis through effects on mRNA interactions. In addition, Puf3p links the mitochore, a complex required for mitochondrial-cytoskeletal interactions, to the Arp2/3 complex, the force generator for actin-dependent, bud-directed mitochondrial movement. Puf3p, the mitochore, and the Arp2/3 complex coimmunoprecipitate and have two-hybrid interactions. Moreover, deletion of PUF3 results in reduced interaction between the mitochore and the Arp2/3 complex and defects in mitochondrial morphology and motility similar to those observed in Arp2/3 complex mutants. Thus, Puf3p is a mitochondrial protein that contributes to the biogenesis and motility of the organelle.


Assuntos
Mitocôndrias/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Complexo 2-3 de Proteínas Relacionadas à Actina/genética , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Sítios de Ligação/genética , Divisão Celular/genética , Divisão Celular/fisiologia , Imunoprecipitação , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Mitocôndrias/fisiologia , Proteínas de Transporte da Membrana Mitocondrial , Membranas Mitocondriais/metabolismo , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Mutação , Ligação Proteica/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/fisiologia , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/fisiologia , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/fisiologia , Transformação Genética , Técnicas do Sistema de Duplo-Híbrido
8.
Appl Microbiol Biotechnol ; 95(3): 671-82, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22569635

RESUMO

Yeast is capable of performing posttranslational modifications, such as N- or O-glycosylation. It has been demonstrated that N-glycans play critical biological roles in therapeutic glycoproteins by modulating pharmacokinetics and pharmacodynamics. However, N-glycan sites on recombinant glycoproteins produced in yeast can be underglycosylated, and hence, not completely occupied. Genomic homology analysis indicates that the Pichia pastoris oligosaccharyltransferase (OST) complex consists of multiple subunits, including OST1, OST2, OST3, OST4, OST5, OST6, STT3, SWP1, and WBP1. Monoclonal antibodies produced in P. pastoris show that N-glycan site occupancy ranges from 75-85 % and is affected mainly by the OST function, and in part, by process conditions. In this study, we demonstrate that N-glycan site occupancy of antibodies can be improved to greater than 99 %, comparable to that of antibodies produced in mammalian cells (CHO), by overexpressing Leishmania major STT3D (LmSTT3D) under the control of an inducible alcohol oxidase 1 (AOX1) promoter. N-glycan site occupancy of non-antibody glycoproteins such as recombinant human granulocyte macrophage colony-stimulating factor (rhGM-CSF) was also significantly improved, suggesting that LmSTT3D has broad substrate specificity. These results suggest that the glycosylation status of recombinant proteins can be improved by heterologous STT3 expression, which will allow for the customization of therapeutic protein profiles.


Assuntos
Glicoproteínas/metabolismo , Glicosilação , Pichia/metabolismo , Processamento de Proteína Pós-Traducional , Animais , Anticorpos Monoclonais/metabolismo , Células CHO , Cricetinae , Expressão Gênica , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Fator Estimulador de Colônias de Granulócitos e Macrófagos , Humanos , Leishmania major/enzimologia , Leishmania major/genética , Engenharia Metabólica , Proteínas Recombinantes/metabolismo
9.
Bioessays ; 32(12): 1040-9, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20886527

RESUMO

Movement and positional control of mitochondria and other organelles are coordinated with cell cycle progression in the budding yeast, Saccharomyces cerevisiae. Recent studies have revealed a checkpoint that inhibits cytokinesis when there are severe defects in mitochondrial inheritance. An established checkpoint signaling pathway, the mitotic exit network (MEN), participates in this process. Here, we describe mitochondrial motility during inheritance in budding yeast, emerging evidence for mitochondrial quality control during inheritance, and organelle inheritance checkpoints for mitochondria and other organelles.


Assuntos
Citocinese , Mitocôndrias/fisiologia , Mitose , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiologia , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , DNA Mitocondrial/genética , Mitocôndrias/genética , Mitocôndrias/metabolismo , Miosinas/metabolismo , Organelas/genética , Organelas/fisiologia , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
10.
STAR Protoc ; 3(3): 101599, 2022 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-35928001

RESUMO

Replicative lifespan, a measure of the number of times that a yeast cell can divide before senescence, is one model for aging. Here, we provide a protocol for enrichment of yeast as a function of replicative age using a miniature chemostat aging device (mCAD). This protocol allows for isolation of quantities of cells that are sufficient for biochemical or genomic analysis. We also describe an approach to assess bud site selection, a marker for cell polarity, during the aging process. For complete details on the use and execution of this protocol, please refer to Yang et al. (2022).


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Divisão Celular , Senescência Celular/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
11.
iScience ; 25(3): 103957, 2022 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-35281729

RESUMO

Babies are born young, largely independent of the age of their mothers. Mother-daughter age asymmetry in yeast is achieved, in part, by inheritance of higher-functioning mitochondria by buds and retention of some high-functioning mitochondria in mother cells. The mitochondrial F box protein, Mfb1p, tethers mitochondria at both poles in a cell cycle-regulated manner: it localizes to and anchors mitochondria at the mother cell tip throughout the cell cycle and at the bud tip before cytokinesis. Here, we report that cell polarity and polarized localization of Mfb1p decline with age in Saccharomyces cerevisiae. Moreover, deletion of genes (BUD1, BUD2, and BUD5) that mediate symmetry breaking during establishment of cell polarity and asymmetric yeast cell division cause depolarized Mfb1p localization and defects in mitochondrial distribution and quality control. Our results support a role for the polarity machinery in lifespan through modulating Mfb1 function in asymmetric inheritance of mitochondria during yeast cell division.

12.
Autophagy Rep ; 1(1): 197-200, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37840550

RESUMO

Lipid droplets (LDs) are organelles that function as sites for lipid storage. LDs have also been implicated in the cellular response to proteotoxic or lipotoxic stress as sites for sequestering dysfunctional or excess proteins or lipids, and targeting those cargos for degradation by LD microautophagy (microlipophagy, µLP). Here, we describe two mechanisms for µLP in yeast, which are triggered by different stressors. µLP occurs at raft-like liquid ordered microdomains in the vacuolar membrane in yeast exposed to severe nutrient limitations. In contrast, in yeast exposed to ER stress or less severe nutrient limitations, LD uptake at the vacuole is liquid ordered (Lo) microdomain-independent and dependent upon vacuolar membrane remodeling mediated by endosomal sorting complexes required for transport (ESCRT).

13.
Front Cell Dev Biol ; 10: 852021, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35281095

RESUMO

Lipid droplets (LDs) have emerged not just as storage sites for lipids but as central regulators of metabolism and organelle quality control. These critical functions are achieved, in part, at membrane contact sites (MCS) between LDs and other organelles. MCS are sites of transfer of cellular constituents to or from LDs for energy mobilization in response to nutrient limitations, as well as LD biogenesis, expansion and autophagy. Here, we describe recent findings on the mechanisms underlying the formation and function of MCS between LDs and mitochondria, ER and lysosomes/vacuoles and the role of the cytoskeleton in promoting LD MCS through its function in LD movement and distribution in response to environmental cues.

14.
Methods Mol Biol ; 2364: 53-80, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34542848

RESUMO

Although budding yeast, Saccharomyces cerevisiae, is widely used as a model organism in biological research, studying cell biology in yeast was hindered due to its small size, rounded morphology, and cell wall. However, with improved techniques, researchers can acquire high-resolution images and carry out rapid multidimensional analysis of a yeast cell. As a result, imaging in yeast has emerged as an important tool to study cytoskeletal organization, function, and dynamics. This chapter describes techniques and approaches for visualizing the actin cytoskeleton in live yeast cells.


Assuntos
Saccharomyces cerevisiae , Citoesqueleto de Actina , Actinas , Divisão Celular , Proteínas de Saccharomyces cerevisiae
15.
Methods Mol Biol ; 2364: 81-100, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34542849

RESUMO

Budding yeast, Saccharomyces cerevisiae, is an appealing model organism to study the organization and function of the actin cytoskeleton. With the advent of techniques to perform high-resolution, multidimensional analysis of the yeast cell, imaging of yeast has emerged as an important tool for research on the cytoskeleton. This chapter describes techniques and approaches for visualizing the actin cytoskeleton in fixed yeast cells with wide-field and super-resolution fluorescence microscopy.


Assuntos
Saccharomyces cerevisiae , Citoesqueleto de Actina , Actinas , Citoesqueleto , Microscopia de Fluorescência
16.
Nat Commun ; 13(1): 2706, 2022 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-35577788

RESUMO

In yeast, actin cables are F-actin bundles that are essential for cell division through their function as tracks for cargo movement from mother to daughter cell. Actin cables also affect yeast lifespan by promoting transport and inheritance of higher-functioning mitochondria to daughter cells. Here, we report that actin cable stability declines with age. Our genome-wide screen for genes that affect actin cable stability identified the open reading frame YKL075C. Deletion of YKL075C results in increases in actin cable stability and abundance, mitochondrial fitness, and replicative lifespan. Transcriptome analysis revealed a role for YKL075C in regulating branched-chain amino acid (BCAA) metabolism. Consistent with this, modulation of BCAA metabolism or decreasing leucine levels promotes actin cable stability and function in mitochondrial quality control. Our studies support a role for actin stability in yeast lifespan, and demonstrate that this process is controlled by BCAA and a previously uncharacterized ORF YKL075C, which we refer to as actin, aging and nutrient modulator protein 1 (AAN1).


Assuntos
Citoesqueleto de Actina , Longevidade , Mitocôndrias , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Longevidade/genética , Mitocôndrias/metabolismo , Nutrientes/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
17.
Curr Biol ; 18(17): R743-R745, 2008 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-18786375

RESUMO

A recent study describes a role for a Rab GTPase previously implicated in endoplasmic reticulum and mitochondrial inheritance and for a COPI coatomer subunit in the targeting of a type V myosin to the late Golgi in yeast.


Assuntos
Complexo de Golgi/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiologia , Proteínas rab de Ligação ao GTP/fisiologia , Compartimento Celular , Divisão Celular , Mitocôndrias/metabolismo , Miosina Tipo V/metabolismo , Transporte Proteico/fisiologia , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo
18.
J Cell Biol ; 175(6): 957-69, 2006 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-17178912

RESUMO

Retrograde flow of cortical actin networks and bundles is essential for cell motility and retrograde intracellular movement, and for the formation and maintenance of microvilli, stereocilia, and filopodia. Actin cables, which are F-actin bundles that serve as tracks for anterograde and retrograde cargo movement in budding yeast, undergo retrograde flow that is driven, in part, by actin polymerization and assembly. We find that the actin cable retrograde flow rate is reduced by deletion or delocalization of the type II myosin Myo1p, and by deletion or conditional mutation of the Myo1p motor domain. Deletion of the tropomyosin isoform Tpm2p, but not the Tpm1p isoform, increases the rate of actin cable retrograde flow. Pretreatment of F-actin with Tpm2p, but not Tpm1p, inhibits Myo1p binding to F-actin and Myo1p-dependent F-actin gliding. These data support novel, opposing roles of Myo1p and Tpm2 in regulating retrograde actin flow in budding yeast and an isoform-specific function of Tpm1p in promoting actin cable function in myosin-driven anterograde cargo transport.


Assuntos
Actinas/metabolismo , Miosina Tipo II/fisiologia , Saccharomycetales/metabolismo , Tropomiosina/fisiologia , Citoesqueleto de Actina , Sequência de Aminoácidos , Citoesqueleto , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Dados de Sequência Molecular , Isoformas de Proteínas , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Saccharomycetales/crescimento & desenvolvimento , Homologia de Sequência de Aminoácidos
19.
Mol Biol Cell ; 32(22): br12, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34668753

RESUMO

Microlipophagy (µLP), degradation of lipid droplets (LDs) by microautophagy, occurs by autophagosome-independent direct uptake of LDs at lysosomes/vacuoles in response to nutrient limitations and ER stressors in Saccharomyces cerevisiae. In nutrient-limited yeast, liquid-ordered (Lo) microdomains, sterol-rich raftlike regions in vacuolar membranes, are sites of membrane invagination during LD uptake. The endosome sorting complex required for transport (ESCRT) is required for sterol transport during Lo formation under these conditions. However, ESCRT has been implicated in mediating membrane invagination during µLP induced by ER stressors or the diauxic shift from glycolysis- to respiration-driven growth. Here we report that ER stress induced by lipid imbalance and other stressors induces Lo microdomain formation. This process is ESCRT independent and dependent on Niemann-Pick type C sterol transfer proteins. Inhibition of ESCRT or Lo microdomain formation partially inhibits lipid imbalance-induced µLP, while inhibition of both blocks this µLP. Finally, although the ER stressors dithiothreitol or tunicamycin induce Lo microdomains, µLP in response to these stressors is ESCRT dependent and Lo microdomain independent. Our findings reveal that Lo microdomain formation is a yeast stress response, and stress-induced Lo microdomain formation occurs by stressor-specific mechanisms. Moreover, ESCRT and Lo microdomains play functionally distinct roles in LD uptake during stress-induced µLP.


Assuntos
Gotículas Lipídicas/metabolismo , Microdomínios da Membrana/metabolismo , Microautofagia/fisiologia , Saccharomyces cerevisiae/fisiologia , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Estresse do Retículo Endoplasmático , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Gotículas Lipídicas/química , Microdomínios da Membrana/química , Oxirredução , Saccharomyces cerevisiae/citologia , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Vacúolos/química , Vacúolos/metabolismo , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
20.
Autophagy ; 17(9): 2363-2383, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33021864

RESUMO

Our previous studies reveal a mechanism for lipid droplet (LD)-mediated proteostasis in the endoplasmic reticulum (ER) whereby unfolded proteins that accumulate in the ER in response to lipid imbalance-induced ER stress are removed by LDs and degraded by microlipophagy (µLP), autophagosome-independent LD uptake into the vacuole (the yeast lysosome). Here, we show that dithiothreitol- or tunicamycin-induced ER stress also induces µLP and identify an unexpected role for vacuolar membrane dynamics in this process. All stressors studied induce vacuolar fragmentation prior to µLP. Moreover, during µLP, fragmented vacuoles fuse to form cup-shaped structures that encapsulate and ultimately take up LDs. Our studies also indicate that proteins of the endosome sorting complexes required for transport (ESCRT) are upregulated, required for µLP, and recruited to LDs, vacuolar membranes, and sites of vacuolar membrane scission during µLP. We identify possible target proteins for LD-mediated ER proteostasis. Our live-cell imaging studies reveal that one potential target (Nup159) localizes to punctate structures that colocalizes with LDs 1) during movement from ER membranes to the cytosol, 2) during microautophagic uptake into vacuoles, and 3) within the vacuolar lumen. Finally, we find that mutations that inhibit LD biogenesis, homotypic vacuolar membrane fusion or ESCRT function inhibit stress-induced autophagy of Nup159 and other ER proteins. Thus, we have obtained the first direct evidence that LDs and µLP can mediate ER stress-induced ER proteostasis, and identified direct roles for ESCRT and vacuolar membrane fusion in that process.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomycetales , Autofagia , Gotículas Lipídicas/metabolismo , Microautofagia , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Proteostase , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomycetales/metabolismo , Vacúolos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA