Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Drug Metab Rev ; 52(1): 44-65, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31826670

RESUMO

Adverse pharmacokinetic interactions between illicit substances and clinical drugs are of a significant health concern. Illicit substances are taken by healthy individuals as well as by patients with medical conditions such as mental illnesses, acquired immunodeficiency syndrome, diabetes mellitus and cancer. Many individuals that use illicit substances simultaneously take clinical drugs meant for targeted treatment. This concomitant usage can lead to life-threatening pharmacokinetic interactions between illicit substances and clinical drugs. Optimal levels and activity of drug-metabolizing enzymes and drug-transporters are crucial for metabolism and disposition of illicit substances as well as clinical drugs. However, both illicit substances and clinical drugs can induce changes in the expression and/or activity of drug-metabolizing enzymes and drug-transporters. Consequently, with concomitant usage, illicit substances can adversely influence the therapeutic outcome of coadministered clinical drugs. Likewise, clinical drugs can adversely affect the response of coadministered illicit substances. While the interactions between illicit substances and clinical drugs pose a tremendous health and financial burden, they lack a similar level of attention as drug-drug, food-drug, supplement-drug, herb-drug, disease-drug, or other substance-drug interactions such as alcohol-drug and tobacco-drug interactions. This review highlights the clinical pharmacokinetic interactions between clinical drugs and commonly used illicit substances such as cannabis, cocaine and 3, 4-Methylenedioxymethamphetamine (MDMA). Rigorous efforts are warranted to further understand the underlying mechanisms responsible for these clinical pharmacokinetic interactions. It is also critical to extend the awareness of the life-threatening adverse interactions to both health care professionals and patients.


Assuntos
Drogas Ilícitas/farmacocinética , Medicamentos sob Prescrição/farmacocinética , Animais , Interações Medicamentosas , Humanos , Drogas Ilícitas/efeitos adversos , Drogas Ilícitas/farmacologia , Medicamentos sob Prescrição/efeitos adversos , Medicamentos sob Prescrição/farmacologia , Transtornos Relacionados ao Uso de Substâncias/metabolismo
2.
Toxicol Mech Methods ; 30(6): 454-461, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32329394

RESUMO

Endogenous (hyperglycemia) and exogenous (therapeutic, prophylactic, street drugs) factors can considerably contribute to cognitive impairment (CI). Currently, there are few invasive and/or noninvasive markers that correlate with CI and those that do exist require expensive or invasive techniques to predict and accurately measure the cognitive decline. Therefore, we sought to determine hematological markers as predictors of CI in two different chemically induced valid rodent models of CI (streptozotocin induced hyperglycemic model and chemotherapy [doxorubicin/cyclophosphamide] treated rodent model). Hematological markers were analyzed in the above rodent models of CI CI and compared to their respective control groups. There was a significant increase in creatinine kinase, lactate dehydrogenase and aspartate aminotransferase (AST) in the chemotherapy group. Blood urea nitrogen (BUN), alkaline phosphatase (ALP), bilirubin, creatinine and glucose levels were significantly increased in the streptozotocin group. Interestingly, triglycerides were significantly elevated in both the streptozotocin and chemotherapy groups. Previous studies with human subjects have shown a potential link between the increase in triglyceride levels and CI. Likewise, our data indicate a notable correlation with an increase in triglycerides to cognitive impairment in the rodent models. This suggests elevated levels of triglycerides could prove to be a potential noninvasive hematological marker for the increased risk of CI. Further studies are warranted to determine the causal relationship between elevated triglyceride levels and CI.


Assuntos
Comportamento Animal , Cognição , Disfunção Cognitiva/sangue , Triglicerídeos/sangue , Animais , Biomarcadores/sangue , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/psicologia , Ciclofosfamida , Modelos Animais de Doenças , Doxorrubicina , Hiperglicemia/complicações , Testes de Função Renal , Testes de Função Hepática , Masculino , Camundongos , Ratos , Regulação para Cima
3.
Mol Pharmacol ; 95(3): 324-334, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30622215

RESUMO

Activation of human pregnane X receptor (hPXR) has been associated with induction of chemoresistance. It has been proposed that such chemoresistance via cytochrome P450/drug transporters can be reversed with the use of antagonists that specifically abrogate agonist-mediated hPXR activation. Unfortunately, proposed antagonists lack the specificity and appropriate pharmacological characteristics that allow these features to be active in the clinic. We propose that, ideally, an hPXR antagonist would be a cancer drug itself that is part of a "cancer drug cocktail" and effective as an hPXR antagonist at therapeutic concentrations. Belinostat (BEL), a histone deacetylase inhibitor approved for the treatment of relapsed/refractory peripheral T-cell lymphoma, and often used in combination with chemotherapy, is an attractive candidate based on its hPXR ligand-like features. We sought to determine whether these features of BEL might allow it to behave as an antagonist in combination chemotherapy regimens that include hPXR activators. BEL represses agonist-activated hPXR target gene expression at its therapeutic concentrations in human primary hepatocytes and LS174T human colon cancer cells. BEL repressed rifampicin-induced gene expression of CYP3A4 and multidrug resistance protein 1, as well as their respective protein activities. BEL decreased rifampicin-induced resistance to SN-38, the active metabolite of irinotecan, in LS174T cells. This finding indicates that BEL could suppress hPXR agonist-induced chemoresistance. BEL attenuated the agonist-induced steroid receptor coactivator-1 interaction with hPXR, and, together with molecular docking studies, the study suggests that BEL directly interacts with multiple sites on hPXR. Taken together, our results suggest that BEL, at its clinically relevant therapeutic concentration, can antagonize hPXR agonist-induced gene expression and chemoresistance.


Assuntos
Citocromo P-450 CYP3A/metabolismo , Ácidos Hidroxâmicos/farmacologia , Rifampina/farmacologia , Sulfonamidas/farmacologia , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Adulto , Linhagem Celular Tumoral , Feminino , Expressão Gênica/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Irinotecano/farmacologia , Masculino , Pessoa de Meia-Idade , Simulação de Acoplamento Molecular/métodos , Receptor de Pregnano X/metabolismo , Receptores de Esteroides/metabolismo , Adulto Jovem
4.
Biochem Biophys Res Commun ; 460(4): 1002-7, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25847597

RESUMO

Lymphoma is the most common hematopoietic tumor in dogs and humans, with similar pathogenesis and therapeutic responses. Anticancer drugs like vincristine (VCR) and doxorubicin (DOX) are often used in treating lymphoma. However, the cure rate is generally poor due to chemoresistance. Here, we sought to determine whether stearidonic acid (SDA), a plant-based dietary fatty acid, sensitizes chemoresistant canine lymphoid-tumor cells. GL-1 B-cell lymphoid-tumor cells were found to be highly sensitive to the antitumor-activity of VCR and DOX, while OSW T-cell and 17-71 B-cell lymphoid-tumor cells were moderately and fully resistant, respectively. SDA, at its non-toxic concentrations, significantly promoted the antitumor action of VCR and DOX in both OSW and 17-71 cells. SDA-mediated chemosensitization was associated with SDA inhibition of P-glycoprotein (P-gp) function. This was confirmed in HEK293 cells stably expressing P-gp as well as by increased binding-affinity of SDA to P-gp in P-gp docking analysis. SDA at its chemosensitizing concentrations did not affect the viability of healthy dog peripheral blood mononuclear cells, suggesting that SDA is non-toxic to normal dog peripheral blood leucocytes at its chemosensitizing concentrations. Our study identifies a novel dietary fatty acid that may be used as a dietary supplement in combination with chemotherapy to promote the antitumor efficacy of the chemotherapy drugs in dogs and possibly in humans with chemoresistant lymphoma.


Assuntos
Antineoplásicos/uso terapêutico , Ácidos Graxos Ômega-3/farmacologia , Linfoma de Células B/tratamento farmacológico , Plantas/química , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Animais , Linhagem Celular Tumoral , Cães , Sinergismo Farmacológico , Ácidos Graxos Ômega-3/uso terapêutico
5.
Drug Metab Dispos ; 43(3): 385-91, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25561723

RESUMO

Variations in the expression of human pregnane X receptor (hPXR)-mediated cytochrome p450 3A4 (CYP3A4) in liver can alter therapeutic response to a variety of drugs and may lead to potential adverse drug interactions. We sought to determine whether Mg(2+)/Mn(2+)-dependent phosphatase 1A (PPM1A) regulates hPXR-mediated CYP3A4 expression. PPM1A was found to be coimmunoprecipitated with hPXR. Genetic or pharmacologic activation of PPM1A led to a significant increase in hPXR transactivation of CYP3A4 promoter activity. In contrast, knockdown of endogenous PPM1A not only attenuated hPXR transactivation, but also increased proliferation of HepG2 human liver carcinoma cells, suggesting that PPM1A expression levels regulate hPXR, and that PPM1A expression is regulated in a proliferation-dependent manner. Indeed, PPM1A expression and hPXR transactivation were found to be significantly reduced in subconfluent HepG2 cells compared with confluent HepG2 cells, suggesting that both PPM1A expression and hPXR-mediated CYP3A4 expression may be downregulated in proliferating livers. Elevated PPM1A levels led to attenuation of hPXR inhibition by tumor necrosis factor-α and cyclin-dependent kinase-2, which are known to be upregulated and essential during liver regeneration. In mouse regenerating livers, similar to subconfluent HepG2 cells, expression of both PPM1A and the mouse PXR target gene cyp3a11 was found to be downregulated. Our results show that PPM1A can positively regulate PXR activity by counteracting PXR inhibitory signaling pathways that play a major role in liver regeneration. These results implicate a novel role for PPM1A in regulating hPXR-mediated CYP3A4 expression in hepatocytes and may explain a mechanism for CYP3A repression in regenerating livers.


Assuntos
Citocromo P-450 CYP3A/genética , Expressão Gênica/genética , Fosfoproteínas Fosfatases/metabolismo , Receptores de Esteroides/metabolismo , Animais , Células COS , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Chlorocebus aethiops , Quinases Ciclina-Dependentes/genética , Quinases Ciclina-Dependentes/metabolismo , Citocromo P-450 CYP3A/metabolismo , Regulação para Baixo/genética , Células Hep G2 , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fosfoproteínas Fosfatases/genética , Receptor de Pregnano X , Regiões Promotoras Genéticas/genética , Proteína Fosfatase 2C , Receptores de Esteroides/genética , Transdução de Sinais/genética , Ativação Transcricional/genética , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Regulação para Cima/genética
6.
Bioorg Med Chem ; 23(3): 602-11, 2015 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-25537531

RESUMO

Naturally occurring condensed quinolines have anticancer properties. In efforts to find active analogues, we designed and synthesized eight polycyclic heterocycles with a pyrimido[1″,2″:1,5]pyrazolo[3,4-b]quinoline framework (IND series). The compounds were evaluated for activity against colon (HCT-116 and S1-MI-80), prostate (PC3 and DU-145), breast (MCF-7 and MDAMB-231), ovarian (ov2008 and A2780), and hepatocellular (HepG2) cancer cells and against non-cancerous Madin Darby canine kidney (MDCK), mouse embryonic fibroblast (NIH/3T3), and human embryonic kidney cells (HEK293). IND-2, a 4-chloro-2-methyl pyrimido[1″,2″:1,5]pyrazolo[3,4-b]quinoline, exhibited more than ten-fold selectivity and potent cytotoxic activity against colon cancer cells relative to the other cancer and non-cancer cells. With five additional colon cancer cell lines (HT-29, HCT-15, LS-180, LS-174, and LoVo), IND-2 had similar cytotoxicity and selectivity, and sub-micromolar concentrations caused changes in the morphology of HCT-116 and HCT-15 cells. IND-2 did not activate the transactivating function of the pregnane X receptor (PXR), indicating that it does not induce PXR-regulated ABCB1 or ABCG2 transporters. Indeed, IND-2 was not a substrate of ABCB1 or ABCG2, and it induced cytotoxicity in HEK293 cells overexpressing ABCB1 or ABCG2 to the same extent as in normal HEK293 cells. IND-2 was cytotoxic to resistant colon carcinoma S1-MI-80 cells, approximately three- and five-fold more than SN-38 and topotecan, respectively. In HCT-116 colon cancer cells, IND-2 produced concentration-dependent changes in mitochondrial membrane potential, leading to apoptosis, and sub-micromolar concentrations caused chromosomal DNA fragmentation. These findings suggest that, by increasing apoptosis, IND-2 has potential therapeutic efficacy for colorectal cancer.


Assuntos
Apoptose/efeitos dos fármacos , Neoplasias do Colo/tratamento farmacológico , Quinolinas/farmacologia , Animais , Antineoplásicos/farmacologia , Cães , Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos , Ensaios de Seleção de Medicamentos Antitumorais , Células HCT116 , Células HEK293 , Células Hep G2 , Humanos , Células MCF-7 , Células Madin Darby de Rim Canino , Camundongos , Pirimidinas/farmacologia
7.
Biomolecules ; 14(4)2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38672512

RESUMO

In our previous study, we demonstrated the impact of overexpression of CB1 and CB2 cannabinoid receptors and the inhibitory effect of endocannabinoids (2-arachidonoylglycerol (2-AG) and Anandamide (AEA)) on canine (Canis lupus familiaris) and human (Homo sapiens) non-Hodgkin lymphoma (NHL) cell lines' viability compared to cells treated with a vehicle. The purpose of this study was to demonstrate the anti-cancer effects of the phytocannabinoids, cannabidiol (CBD) and ∆9-tetrahydrocannabinol (THC), and the synthetic cannabinoid WIN 55-212-22 (WIN) in canine and human lymphoma cell lines and to compare their inhibitory effect to that of endocannabinoids. We used malignant canine B-cell lymphoma (BCL) (1771 and CLB-L1) and T-cell lymphoma (TCL) (CL-1) cell lines, and human BCL cell line (RAMOS). Our cell viability assay results demonstrated, compared to the controls, a biphasic effect (concentration range from 0.5 µM to 50 µM) with a significant reduction in cancer viability for both phytocannabinoids and the synthetic cannabinoid. However, the decrease in cell viability in the TCL CL-1 line was limited to CBD. The results of the biochemical analysis using the 1771 BCL cell line revealed a significant increase in markers of oxidative stress, inflammation, and apoptosis, and a decrease in markers of mitochondrial function in cells treated with the exogenous cannabinoids compared to the control. Based on the IC50 values, CBD was the most potent phytocannabinoid in reducing lymphoma cell viability in 1771, Ramos, and CL-1. Previously, we demonstrated the endocannabinoid AEA to be more potent than 2-AG. Our study suggests that future studies should use CBD and AEA for further cannabinoid testing as they might reduce tumor burden in malignant NHL of canines and humans.


Assuntos
Benzoxazinas , Canabidiol , Sobrevivência Celular , Dronabinol , Linfoma não Hodgkin , Morfolinas , Naftalenos , Humanos , Cães , Canabidiol/farmacologia , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Dronabinol/farmacologia , Linfoma não Hodgkin/tratamento farmacológico , Linfoma não Hodgkin/metabolismo , Linfoma não Hodgkin/patologia , Benzoxazinas/farmacologia , Naftalenos/farmacologia , Apoptose/efeitos dos fármacos , Antineoplásicos/farmacologia , Endocanabinoides/farmacologia , Endocanabinoides/metabolismo
8.
Front Vet Sci ; 11: 1327377, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38420207

RESUMO

Introduction: Osteosarcoma (OSA) is an aggressive form of bone cancer in both dogs and humans. The treatment options for metastatic (stage III) OSA are currently limited and the prognosis is poor. Zoledronate, a second generation amino-bisphosphonate, is commonly used for palliation of cancer induced bone pain. Zoledronate has also demonstrated anti-cancer properties and possibly enhances the cytotoxicity of doxorubicin in a canine histiocytosis cell line and human prostatic cancer cell line. The goal of this study was to evaluate the combination effect of zoledronate and various chemotherapeutic drugs in canine OSA cells. Methods: Canine OSA cell line (D17), cells from two canine primary OSAs, and MDCK, a canine kidney cell line, were used to evaluate the therapeutic potential of these drugs. Carboplatin, doxorubicin, vinorelbine, toceranib, and isophosphoramide mustard (active metabolite of ifosfamide) were used as chemotherapeutic agents. First, cells were treated with either zoledronate or chemotherapy drug alone for 72 hours. Cell viability was assessed using CellTiter Glo and IC5, IC10, IC20, and IC50 were calculated. Second, cells were treated with a combination of zoledronate and each chemotherapeutic agent at their IC5, IC10, IC20, and IC50 concentrations. After 72 hours, cell viability was assessed by CellTiter Glo. Results and discussion: Zoledronate, carboplatin, doxorubicin, vinorelbine, and isophosphoramide mustard showed concentration dependent decrease in cell viability. Toceranib showed decreased cell viability only at higher concentrations. When zoledronate was used in combination with chemotherapy drugs, while it showed potential synergistic effects with toceranib, potential antagonistic effects with vinorelbine and isophosphoramide mustard were observed. However, the results differed by cell line and thus, further evaluation is warranted to understand the exact mechanism of action.

9.
Front Immunol ; 15: 1302587, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38533507

RESUMO

The breast cancer tumor microenvironment (TME) is dynamic, with various immune and non-immune cells interacting to regulate tumor progression and anti-tumor immunity. It is now evident that the cells within the TME significantly contribute to breast cancer progression and resistance to various conventional and newly developed anti-tumor therapies. Both immune and non-immune cells in the TME play critical roles in tumor onset, uncontrolled proliferation, metastasis, immune evasion, and resistance to anti-tumor therapies. Consequently, molecular and cellular components of breast TME have emerged as promising therapeutic targets for developing novel treatments. The breast TME primarily comprises cancer cells, stromal cells, vasculature, and infiltrating immune cells. Currently, numerous clinical trials targeting specific TME components of breast cancer are underway. However, the complexity of the TME and its impact on the evasion of anti-tumor immunity necessitate further research to develop novel and improved breast cancer therapies. The multifaceted nature of breast TME cells arises from their phenotypic and functional plasticity, which endows them with both pro and anti-tumor roles during tumor progression. In this review, we discuss current understanding and recent advances in the pro and anti-tumoral functions of TME cells and their implications for developing safe and effective therapies to control breast cancer progress.


Assuntos
Neoplasias , Microambiente Tumoral , Humanos , Comunicação Celular , Evasão da Resposta Imune , Células Estromais
10.
Cancer Rep (Hoboken) ; 7(4): e2074, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38627904

RESUMO

BACKGROUND: Iatrogenesis is an inevitable global threat to healthcare that drastically increases morbidity and mortality. Cancer is a fatal pathological condition that affects people of different ages, sexes, and races around the world. In addition to the detrimental cancer pathology, one of the most common contraindications and challenges observed in cancer patients is severe adverse drug effects and hypersensitivity reactions induced by chemotherapy. Chemotherapy-induced cognitive neurotoxicity is clinically referred to as Chemotherapy-induced cognitive impairment (CICI), chemobrain, or chemofog. In addition to CICI, chemotherapy also causes neuropsychiatric issues, mental disorders, hyperarousal states, and movement disorders. A synergistic chemotherapy regimen of Doxorubicin (Anthracycline-DOX) and Cyclophosphamide (Alkylating Cytophosphane-CPS) is indicated for the management of various cancers (breast cancer, lymphoma, and leukemia). Nevertheless, there are limited research studies on Doxorubicin and Cyclophosphamide's pharmacodynamic and toxicological effects on dopaminergic neuronal function. AIM: This study evaluated the dopaminergic neurotoxic effects of Doxorubicin and Cyclophosphamide. METHODS AND RESULTS: Doxorubicin and Cyclophosphamide were incubated with dopaminergic (N27) neurons. Neuronal viability was assessed using an MTT assay. The effect of Doxorubicin and Cyclophosphamide on various prooxidants, antioxidants, mitochondrial Complex-I & IV activities, and BAX expression were evaluated by Spectroscopic, Fluorometric, and RT-PCR methods, respectively. Prism-V software (La Jolla, CA, USA) was used for statistical analysis. Chemotherapeutics dose-dependently inhibited the proliferation of the dopaminergic neurons. The dopaminergic neurotoxic mechanism of Doxorubicin and Cyclophosphamide was attributed to a significant increase in prooxidants, a decrease in antioxidants, and augmented apoptosis without affecting mitochondrial function. CONCLUSION: This is one of the first reports that reveal Doxorubicin and Cyclophosphamide induce significant dopaminergic neurotoxicity. Thus, Chemotherapy-induced adverse drug reaction issues substantially persist during and after treatment and sometimes never be completely resolved clinically. Consequently, failure to adopt adequate patient care measures for cancer patients treated with certain chemotherapeutics might substantially raise the incidence of numerous movement disorders.


Assuntos
Neoplasias da Mama , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Transtornos dos Movimentos , Humanos , Feminino , Ciclofosfamida/efeitos adversos , Antraciclinas/uso terapêutico , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Antibióticos Antineoplásicos , Doxorrubicina/farmacologia , Neoplasias da Mama/patologia , Transtornos dos Movimentos/tratamento farmacológico
11.
J Xenobiot ; 14(3): 1256-1267, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39311150

RESUMO

Leydig cells (LCs) in the testes produce the male sex hormone testosterone (T). Several xenobiotics, including clinical drugs, supplements, and environmental chemicals, are known to disrupt T homeostasis. Notably, some of these xenobiotics are known to activate the pregnane X receptor (PXR), a ligand-dependent nuclear receptor. However, it is currently unknown whether PXR is expressed in LCs and whether PXR activation alters T synthesis in rodent LCs. Therefore, in this study, we sought to determine whether PXR is expressed in rodent LCs and whether pregnenolone 16-alpha carbonitrile (PCN), the prototype agonist of rodent PXR, regulates T biosynthesis in rodent LCs. Hormonal as well as protein and gene expression analyses were conducted in rat primary LCs and MA-10 mouse Leydig cells. Results showed that PXR was expressed at the mRNA and protein level in both rat primary LCs and MA-10 cells. Incubation of rat primary LCs with PCN resulted in a significant decrease in T secretion. This PCN-induced decrease in T secretion was associated with decreased protein expression of key steroidogenic enzymes such as 3ß-HSD and CYP17A1. RNA-seq results from MA-10 cells showed that PCN down-regulated the transcripts of steroidogenic enzymes and proteins involved in the T synthesis pathway. Together, these results suggest that PCN, an agonist of rodent PXR, can regulate T biosynthesis in rodent LCs by down-regulating the expression of the steroidogenic enzymes involved in T biosynthesis. Our results are significant as they provide a potential novel mechanism for disruption of testosterone homeostasis by a variety of xenobiotics.

12.
BMC Physiol ; 13: 6, 2013 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-23537040

RESUMO

BACKGROUND: The vestibular system controls the ion composition of its luminal fluid through several epithelial cell transport mechanisms under hormonal regulation. The semicircular canal duct (SCCD) epithelium has been shown to secrete Cl- under ß2-adrenergic stimulation. In the current study, we sought to determine the ion transporters involved in Cl- secretion and whether secretion is regulated by PKA and glucocorticoids. RESULTS: Short circuit current (Isc) from rat SCCD epithelia demonstrated stimulation by forskolin (EC50: 0.8 µM), 8-Br-cAMP (EC50: 180 µM), 8-pCPT-cAMP (100 µM), IBMX (250 µM), and RO-20-1724 (100 µM). The PKA activator N6-BNZ-cAMP (0.1, 0.3 & 1 mM) also stimulated Isc. Partial inhibition of stimulated Isc individually by bumetanide (10 & 50 µM), and [(dihydroindenyl)oxy]alkanoic acid (DIOA, 100 µM) were additive and complete. Stimulated Isc was also partially inhibited by CFTRinh-172 (5 & 30 µM), flufenamic acid (5 µM) and diphenylamine-2,2'-dicarboxylic acid (DPC; 1 mM). Native canals of CFTR+/- mice showed a stimulation of Isc from isoproterenol and forskolin+IBMX but not in the presence of both bumetanide and DIOA, while canals from CFTR-/- mice had no responses. Nonetheless, CFTR-/- mice showed no difference from CFTR+/- mice in their ability to balance (rota-rod). Stimulated Isc was greater after chronic incubation (24 hr) with the glucocorticoids dexamethasone (0.1 & 0.3 µM), prednisolone (0.3, 1 & 3 µM), hydrocortisone (0.01, 0.1 & 1 µM), and corticosterone (0.1 & 1 µM) and mineralocorticoid aldosterone (1 µM). Steroid action was blocked by mifepristone but not by spironolactone, indicating all the steroids activated the glucocorticoid, but not mineralocorticoid, receptor. Expression of transcripts for CFTR; for KCC1, KCC3a, KCC3b and KCC4, but not KCC2; for NKCC1 but not NKCC2 and for WNK1 but only very low WNK4 was determined. CONCLUSIONS: These results are consistent with a model of Cl- secretion whereby Cl- is taken up across the basolateral membrane by a Na+-K+-2Cl- cotransporter (NKCC) and potentially another transporter, is secreted across the apical membrane via a Cl- channel, likely CFTR, and demonstrate the regulation of Cl- secretion by protein kinase A and glucocorticoids.


Assuntos
Bumetanida/farmacologia , Cloretos/metabolismo , AMP Cíclico/metabolismo , Epitélio/efeitos dos fármacos , Glucocorticoides/metabolismo , Adenilil Ciclases/metabolismo , Animais , Colforsina/farmacologia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Epitélio/metabolismo , Transporte de Íons/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Inibidores de Fosfodiesterase/farmacologia , Potássio/metabolismo , Ratos , Ratos Wistar , Receptores de Glucocorticoides/metabolismo , Canais Semicirculares , Sódio/metabolismo
13.
Life Sci ; 326: 121752, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37172818

RESUMO

Bisphenol-S (BPS) is a current substitute for Bisphenol-A (BPA) in various commercial products (paper, plastics, protective can-coatings, etc.) used by all age groups globally. The current literature indicates that a drastic surge in pro-oxidants, pro-apoptotic, and pro-inflammatory biomarkers in combination with diminished mitochondrial activity can potentially decrease hepatic function leading to morbidity and mortality. Consequently, there are increasing public health concerns that substantial Bisphenol-mediated effects may impact hepatocellular functions, particularly in newborns exposed to BPA and BPS postnatally. However, the acute postnatal impact of BPA and BPS and the molecular mechanisms affecting hepatocellular functions are unknown. Therefore, the current study investigated the acute postnatal effect of BPA and BPS on the biomarkers of hepatocellular functions, including oxidative stress, inflammation, apoptosis, and mitochondrial activity in male Long-Evans rats. BPA and BPS (5 and 20 microgram/Liter (µg/L) of drinking water) were administered to 21-day-old male rats for 14 days. BPS had no significant effect on apoptosis, inflammation, and mitochondrial function but significantly reduced the reactive oxygen species (51-60 %, **p < 0.01) and nitrite content (36 %, *p < 0.05), exhibiting hepatoprotective effects. As expected, based on the current scientific literature, BPA induced significant hepatoxicity, as seen by significant glutathione depletion (50 %, *p < 0.05). The in-silico analysis indicated that BPS is effectively absorbed in the gastrointestinal tract without crossing the blood-brain barrier (whereas BPA crosses the blood-brain barrier) and is not a substrate of p-Glycoprotein and Cytochrome P450 enzymes. Thus, the current in-silico and in vivo findings revealed that acute postnatal exposure to BPS had no significant hepatotoxicity.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Ratos , Masculino , Animais , Ratos Long-Evans , Espécies Reativas de Oxigênio , Compostos Benzidrílicos/toxicidade , Inflamação
14.
Nat Prod Commun ; 18(5)2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37292146

RESUMO

Docetaxel (DTX) is the treatment of choice for metastatic castration-resistant prostate cancer. However, developing drug resistance is a significant challenge for achieving effective therapy. This study evaluated the anticancer and synergistic effects on DTX of four natural compounds (calebin A, 3'-hydroxypterostilbene, hispolon, and tetrahydrocurcumin) using PC-3 androgen-resistant human prostate cancer cells. We utilized the CellTiter-Glo® luminescent cell viability assay and human PC-3 androgen-independent prostate cancer cells to determine the antiproliferative effects of the four compounds alone and combined with DTX. Cytotoxicity to normal human prostate epithelial cells was tested in parallel using normal immortalized human prostate epithelial cells (RWPE-1). We used cell imaging and quantitative caspase-3 activity to determine whether these compounds induce apoptosis. We also measured the capacity of each drug to inhibit TNF-α-induced NF-kB using a colorimetric assay. Our results showed that all four natural compounds significantly augmented the toxicity of DTX to androgen-resistant PC-3 prostate cancer cells at IC50. Interestingly, when used alone, each of the four compounds had a higher cytotoxic activity to PC-3 than DTX. Mechanistically, these compounds induced apoptosis, which we confirmed by cell imaging and caspase-3 colorimetric assays. Further, when used either alone or combined with DTX, the four test compounds inhibited TNF-α-induced NF-kB production. More significantly, the cytotoxic effects on normal immortalized human prostate epithelial cells were minimal and non-significant, suggesting prostate cancer-specific effects. In conclusion, the combination of DTX with the four test compounds could effectively enhance the anti-prostate cancer activity of DTX. This combination has the added value of reducing the DTX effective concentration. We surmise that calebin A, 3'-hydroxypterostilbene, hispolon, and tetrahydrocurcumin were all excellent drug candidates that produced significant antiproliferative activity when used alone and synergistically enhanced the anticancer effect of DTX. Further in vivo studies using animal models of prostate cancer are needed to confirm our in vitro findings.

15.
ACS Omega ; 7(12): 9995-10000, 2022 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-35382335

RESUMO

Cancer patients often use cannabinoids for alleviating symptoms induced by cancer pathogenesis and cancer treatment. This use of cannabinoids can have unexpected effects in cancer patients depending on the cancer type, resulting in either beneficial (e.g., anticancer) or adverse (e.g., oncogenic) effects. While cannabinoids can enhance the growth and progression of some cancers, they can also suppress the growth and progression of other cancers. However, the underlying mechanisms of such differential effects are poorly understood. miRNAs have been shown to be involved in driving the hallmarks of cancer, affecting cancer growth and progression as well as cancer therapy response. Although the understanding of the effects of cannabinoids and miRNAs as they relate to cancer continues to improve, the interplay between cannabinoid system and miRNAs in cancer pathogenesis and cancer treatment response is poorly understood. Investigation of such interactions between the cannabinoid system and miRNAs could provide novel insights into the underlying mechanisms of the differential effects of cannabinoids in cancer and can help predict and improve the prognosis of cancer patients.

16.
Endocr Connect ; 11(8)2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35904237

RESUMO

Glucocorticoids have short- and long-term effects on adrenal gland function and development. RNA sequencing (RNA-seq) was performed to identify early transcriptomic responses to the synthetic glucocorticoid, dexamethasone (Dex), in vitro and in vivo. In total, 1711 genes were differentially expressed in the adrenal glands of the 1-h Dex-treated mice. Among them, only 113 were also considered differentially expressed genes (DEGs) in murine adrenocortical Y-1 cells treated with Dex for 1 h. Gene ontology analysis showed that the upregulated DEGs in the adrenal gland of the 1-h Dex-treated mice were highly associated with the development of neuronal cells, suggesting the adrenal medulla had a rapid response to Dex. Interestingly, only 4.3% of Dex-responsive genes in the Y-1 cell line under Dex treatment for 1 h were differentially expressed under Dex treatment for 24 h. The heatmaps revealed that most early responsive DEGs in Y-1 cells during 1 h of treatment exhibited a transient response. The expression of these genes under treatment for 24 h returned to basal levels similar to that during control treatment. In summary, this research compared the rapid transcriptomic effects of Dex stimulation in vivo and in vitro. Notably, adrenocortical Y-1 cells had a transient early response to Dex treatment. Furthermore, the DEGs had a minimal overlap in the 1-h Dex-treated group in vivo and in vitro.

17.
ACS Omega ; 7(38): 34034-34044, 2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36188260

RESUMO

During multidrug combination chemotherapy, activation of the nuclear receptor and the transcription factor human pregnane xenobiotic receptor (hPXR) has been shown to play a role in the development of chemoresistance. Mechanistically, this could occur due to the cancer drug activation of hPXR and the subsequent upregulation of hPXR target genes such as the drug metabolism enzyme, cytochrome P450 3A4 (CYP3A4). In the context of hPXR-mediated drug resistance, hPXR antagonists would be useful adjuncts to PXR-activating chemotherapy. However, there are currently no clinically approved hPXR antagonists in the market. Gefitinib (GEF), a tyrosine kinase inhibitor used for the treatment of advanced non-small-cell lung cancer and effectively used in combinational chemotherapy treatments, is a promising candidate owing to its hPXR ligand-like features. We, therefore, investigated whether GEF would act as an hPXR antagonist when combined with a known hPXR agonist, rifampicin (RIF). At therapeutically relevant concentrations, GEF successfully inhibited the RIF-induced upregulation of endogenous CYP3A4 gene expression in human primary hepatocytes and human hepatocells. Additionally, GEF inhibited the RIF induction of hPXR-mediated CYP3A4 promoter activity in HepG2 human liver carcinoma cells. The computational modeling of molecular docking predicted that GEF could bind to multiple sites on hPXR including the ligand-binding pocket, allowing for potential as a direct antagonist as well as an allosteric inhibitor. Indeed, GEF bound to the ligand-binding domain of the hPXR in cell-free assays, suggesting that GEF directly interacts with the hPXR. Taken together, our results suggest that GEF, at its clinically relevant therapeutic concentration, can antagonize the hPXR agonist-induced CYP3A4 gene expression in human hepatocytes. Thus, GEF could be a potential candidate for use in combinational chemotherapies to combat hPXR agonist-induced chemoresistance. Further studies are warranted to determine whether GEF has sufficient hPXR inhibitor abilities to overcome the hPXR agonist-induced chemoresistance.

18.
Cardiovasc Toxicol ; 22(1): 67-77, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34623620

RESUMO

Administration of Chemotherapeutics, especially doxorubicin (DOX) and cyclophosphamide (CPS), is commonly associated with adverse effects such as myelosuppression and cardiotoxicity. At this time, few approved therapeutic options are currently available for the management of chemotherapy-associated cardiotoxicity. Thus, identification of novel therapeutics with potent cardioprotective properties and minimal adverse effects are pertinent in treating Doxorubicin and Cyclophosphamide-induced cardiotoxicity. Oroxylum indicum extract (OIE, Sabroxy®) is a natural product known to possess several beneficial biological functions including antioxidant, anti-inflammatory and cytoprotective effects. We therefore set to investigate the cardioprotective effects of OIE against Doxorubicin and Cyclophosphamide-induced cardiotoxicity and explore the potential cardioprotective mechanisms involved. Adult male mice were treated with DOX and CPS in combination, OIE alone, or a combination of OIE and DOX & CPS. Swimming test was performed to assess cardiac function. Markers of oxidative stress were assessed by levels of reactive oxygen species (ROS), nitrite, hydrogen peroxide, catalase, and glutathione content. The activity of interleukin converting enzyme and cyclooxygenase was determined as markers of inflammation. Mitochondrial function was assessed by measuring Complex-I activity. Apoptosis was assessed by Caspase-3 and protease activity. Mice treated with DOX and CPS exhibited reduced swim rate, increased oxidative stress, increased inflammation, and apoptosis in the heart tissue. These cardiotoxic effects were significantly reduced by co-administration of OIE. Furthermore, computational molecular docking studies revealed potential binding of DOX and CPS to tyrosine hydroxylase which validated our in vivo findings regarding the inhibition of tyrosine hydroxylase activity. Our current findings indicated that OIE counteracts Doxorubicin and Cyclophosphamide-induced cardiotoxicity-through inhibition of ROS-mediated apoptosis and by blocking the effect on tyrosine hydroxylase. Taken together, our findings suggested that OIE possesses cardioprotective effects to counteract potentially fatal cardiac complications associated with chemotherapy treatment.


Assuntos
Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Bignoniaceae , Cardiopatias/prevenção & controle , Mitocôndrias Cardíacas/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Extratos Vegetais/farmacologia , Animais , Anti-Inflamatórios/isolamento & purificação , Antioxidantes/isolamento & purificação , Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/metabolismo , Bignoniaceae/química , Cardiotoxicidade , Ciclofosfamida , Modelos Animais de Doenças , Doxorrubicina , Cardiopatias/induzido quimicamente , Cardiopatias/metabolismo , Cardiopatias/patologia , Mediadores da Inflamação/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/isolamento & purificação , Espécies Reativas de Oxigênio/metabolismo , Tirosina 3-Mono-Oxigenase/antagonistas & inibidores , Tirosina 3-Mono-Oxigenase/metabolismo
19.
PLoS One ; 16(6): e0252522, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34081735

RESUMO

While chemotherapy is the most effective therapeutic approach for treating a variety of cancer patients, commonly used chemotherapeutic agents, often induce several adverse effects. Escalating evidence indicates that chemotherapeutics, particularly doxorubicin (DOX) and cyclophosphamide (CPS), induce cognitive impairment associated with central nervous system toxicity. This study was performed to determine neuroprotective effects of Oroxylum indicum extract (OIE) in regard to preventing chemotherapy induced cognitive impairment (CICI) occurring after 4 cycles of DOX (2mg/kg) and CPS (50mg/kg) combination chemotherapy in male C57BL/6J mice. OIE significantly prevented the chemotherapy impaired short-term cognitive performance, exploratory behavior associated with cognitive performance, cognitive performance, and spatial learning and memory in the Y-maze, Open-Field, Novel Object Recognition, and Morris Water Maze tests, respectively. These data suggest that OIE protects from the CICI. OIE decreased the reactive oxygen species and lipid peroxide generated by the chemotherapy treatment in the brain, while also blocking the chemotherapy-induced glutathione depletion. These results establish that OIE exhibits potent antioxidant activity in chemotherapy treated mice. Notably, OIE significantly increased the Complex-I and Complex-IV activities in the brain, indicating that OIE enhances mitochondrial function in the brain. In silico analysis of the major active chemical constituents (Oroxylin A, Baicalein and Chrysin) of OIE indicated that OIE has a favorable absorption, distribution, metabolism and excretion (ADME) profile. Taken together, our results are consistent with the conclusion that OIE prevents CICI by counteracting oxidative stress and perhaps by improving mitochondrial function.


Assuntos
Encéfalo/metabolismo , Comprometimento Cognitivo Relacionado à Quimioterapia/fisiopatologia , Disfunção Cognitiva/fisiopatologia , Animais , Antineoplásicos/uso terapêutico , Encéfalo/efeitos dos fármacos , Comprometimento Cognitivo Relacionado à Quimioterapia/tratamento farmacológico , Disfunção Cognitiva/tratamento farmacológico , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Fármacos Neuroprotetores/uso terapêutico , Oxirredução/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/uso terapêutico
20.
Liver Res ; 5(4): 239-242, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34900377

RESUMO

BACKGROUND AND AIM: Chronic exposure to chemotherapeutics can lead to severe adverse events including hepatotoxicity. A combination chemotherapy regimen of doxorubicin (DOX) and cyclophosphamide (CPS) is employed in treatment of several cancers such as leukemia, lymphoma, and breast cancer. It is not well understood whether a combination therapy of DOX and CPS can induce hepatotoxicity. We therefore sought to determine whether co-administration of DOX and CPS at their clinically relevant doses and frequency results in hepatotoxicity. METHODS: Male C57BL/6J mice received one intraperitoneal injection of saline or DOX-2mg /kg and CPS-50mg/kg once a week for 4 weeks. After the treatment period, liver histology and various serum biomarkers of hepatotoxicity were assessed. RESULTS: Co-treatment of DOX and CPS did not alter the serum levels of alanine aminotransferase (ALT), alkaline phosphatase (ALP), bilirubin, albumin, globulin, or total protein. Similarly, co-administration of DOX and CPS did not result in a noticeable change in liver histology. However, it was notable that the concomitant treatment with DOX and CPS resulted in a significant increase in serum levels of aspartate aminotransferase (AST). Elevated serum AST levels were also associated with increased serum creatinine kinase (CK) levels, suggesting that the elevated serum AST levels are likely due to muscle injury following the co-administration of DOX and CPS. CONCLUSION: Taken together, our results, for the first time, suggest that co-administration of DOX and CPS, at their clinically relevant doses and frequency does not induce a significant hepatotoxicity in the mice.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA