Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 256
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-39005080

RESUMO

Aging is associated with inspiratory muscle dysfunction, however, the impact of aging on diaphragm blood flow (BF) regulation, and whether sex-differences exist, is unknown. We tested the hypotheses in young animals, that diaphragm BF and vascular conductance (VC) would be greater in females and that aging would decrease the diaphragm's ability to increase BF with contractions. Young (4-6 months) and old (22-24 months) Fischer-344 rats were divided into four groups: Young Female (YF, n=7), Young Male (YM, n=8), Old Female (OF, n=9), and Old Male (OM, n=9). Diaphragm BF (ml/min/100g) and VC (ml/mmHg/min/100g) were determined, via fluorescent microspheres, at rest and during 1Hz contractions. In YF versus OF, aging blunted the increase in medial costal diaphragm BF (44 ± 5% vs. 16 ± 12%; P < 0.05) and VC (43 ± 7% vs. 21 ± 12%; P < 0.05). Similarly, in YM versus OM, aging blunted the increase in medial costal diaphragm BF (43 ± 6% vs. 24 ± 12%; P < 0.05) and VC (50 ± 6% vs. 34 ± 10%; P < 0.05). Compared to young, dorsal costal diaphragm BF was increased in OF while crural diaphragm BF was increased in OM (P < 0.05). Compared to age-matched females, dorsal costal diaphragm BF was lower in YM and OM (P < 0.05). Aging results in an inability to augment medial costal diaphragm BF and alters regional diaphragm BF distribution in response to muscular contractions. Further, sex differences in regional diaphragm BF are present in young and old animals.

2.
Am J Physiol Regul Integr Comp Physiol ; 326(1): R43-R52, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37899753

RESUMO

Hydrogen peroxide (H2O2) and calcium ions (Ca2+) are functional regulators of skeletal muscle contraction and metabolism. Although H2O2 is one of the activators of the type-1 ryanodine receptor (RyR1) in the Ca2+ release channel, the interdependence between H2O2 and Ca2+ dynamics remains unclear. This study tested the following hypotheses using an in vivo model of mouse tibialis anterior (TA) skeletal muscle. 1) Under resting conditions, elevated cytosolic H2O2 concentration ([H2O2]cyto) leads to a concentration-dependent increase in cytosolic Ca2+ concentration ([Ca2+]cyto) through its effect on RyR1; and 2) in hypoxia (cardiac arrest) and muscle contractions (electrical stimulation), increased [H2O2]cyto induces Ca2+ accumulation. Cytosolic H2O2 (HyPer7) and Ca2+ (Fura-2) dynamics were resolved by TA bioimaging in young C57BL/6J male mice under four conditions: 1) elevated exogenous H2O2; 2) cardiac arrest; 3) twitch (1 Hz, 60 s) contractions; and 4) tetanic (30 s) contractions. Exogenous H2O2 (0.1-100 mM) induced a concentration-dependent increase in [H2O2]cyto (+55% at 0.1 mM; +280% at 100 mM) and an increase in [Ca2+]cyto (+3% at 1.0 mM; +8% at 10 mM). This increase in [Ca2+]cyto was inhibited by pharmacological inhibition of RyR1 by dantrolene. Cardiac arrest-induced hypoxia increased [H2O2]cyto (+33%) and [Ca2+]cyto (+20%) 50 min postcardiac arrest. Compared with the exogenous 1.0 mM H2O2 condition, [H2O2]cyto after tetanic muscle contractions rose less than one-tenth as much, whereas [Ca2+]cyto was 4.7-fold higher. In conclusion, substantial increases in [H2O2]cyto levels evoke only modest Ca2+ accumulation via their effect on the sarcoplasmic reticulum RyR1. On the other hand, contrary to hypoxia secondary to cardiac arrest, increases in [H2O2]cyto from muscle contractions are small, indicating that H2O2 generation is unlikely to be a primary factor driving the significant Ca2+ accumulation after, especially tetanic, muscle contractions.NEW & NOTEWORTHY We developed an in vivo mouse myocyte H2O2 imaging model during exogenous H2O2 loading, ischemic hypoxia induced by cardiac arrest, and muscle contractions. In this study, the interrelationship between cytosolic H2O2 levels and Ca2+ homeostasis during muscle contraction and hypoxic conditions was revealed. These results contribute to the elucidation of the mechanisms of muscle fatigue and exercise adaptation.


Assuntos
Parada Cardíaca , Peróxido de Hidrogênio , Masculino , Animais , Camundongos , Peróxido de Hidrogênio/farmacologia , Peróxido de Hidrogênio/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Camundongos Endogâmicos C57BL , Músculo Esquelético/metabolismo , Contração Muscular/fisiologia , Retículo Sarcoplasmático/metabolismo , Homeostase , Hipóxia/metabolismo , Parada Cardíaca/metabolismo , Cálcio/metabolismo , Fibras Musculares Esqueléticas
3.
Microvasc Res ; 154: 104686, 2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38614154

RESUMO

Pulmonary hypertension (PH) is a chronic, progressive condition in which respiratory muscle dysfunction is a primary contributor to exercise intolerance and dyspnea in patients. Contractile function, blood flow distribution, and the hyperemic response are altered in the diaphragm with PH, and we sought to determine whether this may be attributed, in part, to impaired vasoreactivity of the resistance vasculature. We hypothesized that there would be blunted endothelium-dependent vasodilation and impaired myogenic responsiveness in arterioles from the diaphragm of PH rats. Female Sprague-Dawley rats were randomized into healthy control (HC, n = 9) and monocrotaline-induced PH rats (MCT, n = 9). Endothelium-dependent and -independent vasodilation and myogenic responses were assessed in first-order arterioles (1As) from the medial costal diaphragm in vitro. There was a significant reduction in endothelium-dependent (via acetylcholine; HC, 78 ± 15% vs. MCT, 47 ± 17%; P < 0.05) and -independent (via sodium nitroprusside; HC, 89 ± 10% vs. MCT, 66 ± 10%; P < 0.05) vasodilation in 1As from MCT rats. MCT-induced PH also diminished myogenic constriction (P < 0.05) but did not alter passive pressure responses. The diaphragmatic weakness, impaired hyperemia, and blood flow redistribution associated with PH may be due, in part, to diaphragm vascular dysfunction and thus compromised oxygen delivery which occurs through both endothelium-dependent and -independent mechanisms.


Assuntos
Diafragma , Hipertensão Pulmonar , Ratos Sprague-Dawley , Vasodilatação , Animais , Feminino , Hipertensão Pulmonar/fisiopatologia , Hipertensão Pulmonar/induzido quimicamente , Hipertensão Pulmonar/etiologia , Arteríolas/fisiopatologia , Diafragma/fisiopatologia , Diafragma/irrigação sanguínea , Modelos Animais de Doenças , Vasodilatadores/farmacologia , Endotélio Vascular/fisiopatologia , Vasoconstrição , Monocrotalina/toxicidade , Ratos
4.
J Therm Biol ; 119: 103760, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38048655

RESUMO

Skeletal muscle generates heat via contraction-dependent (shivering) and independent (nonshivering) mechanisms. While this thermogenic capacity of skeletal muscle undoubtedly contributes to the body temperature homeostasis of animals and impacts various cellular functions, the intracellular temperature and its dynamics in skeletal muscle in vivo remain elusive. We aimed to determine the intracellular temperature and its changes within skeletal muscle in vivo during contraction and following relaxation. In addition, we tested the hypothesis that sarcoplasmic reticulum Ca2+ ATPase (SERCA) generates heat and increases the myocyte temperature during a transitory Ca2+-induced contraction-relaxation cycle. The intact spinotrapezius muscle of anesthetized adult male Wistar rats (n = 18) was exteriorized and loaded with the fluorescent probe Cellular Thermoprobe for Fluorescence Ratio (49.3 µM) by microinjection over 1 s. The fluorescence ratio (i.e., 580 nm/515 nm) was measured in vivo during 1) temperature increases induced by means of an external heater, and 2) Ca2+ injection (3.9 nL, 2.0 mM). The fluorescence ratio increased as a linear function of muscle surface temperature from 25 °C to 40 °C (r2 = 0.97, P < 0.01). Ca2+ injection (3.9 nL, 2.0 mM) significantly increased myocyte intracellular temperature: An effect that was suppressed by SERCA inhibition with cyclopiazonic acid (CPA, Ca2+: 38.3 ± 1.4 °C vs Ca2++CPA: 28.3 ± 2.8 °C, P < 0.01 at 1 min following injection). While muscle shortening occurred immediately after the Ca2+ injection, the increased muscle temperature was maintained during the relaxation phase. In this investigation, we demonstrated a novel model for measuring the intracellular temperature of skeletal muscle in vivo and further that heat generation occurs concomitant principally with SERCA functioning and muscle relaxation.


Assuntos
Fibras Musculares Esqueléticas , Músculo Esquelético , Ratos , Masculino , Animais , Ratos Wistar , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/farmacologia , Termogênese/fisiologia , Cálcio
5.
Am J Physiol Regul Integr Comp Physiol ; 325(2): R172-R180, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37335015

RESUMO

Intracellular Ca2+ concentration ([Ca2+]i) is considered important in the regulation of skeletal muscle mass. This study tested the hypothesis that chronic repeated cooling and/or caffeine ingestion would acutely increase [Ca2+]i and hypertrophy muscles potentially in a fiber-type-dependent manner. Control rats and those fed caffeine were subjected to repeated bidiurnal treatments of percutaneous icing, under anesthesia, to reduce the muscle temperature below ∼5°C. The predominantly fast-twitch tibialis anterior (TA) and slow-twitch soleus (SOL) muscles were evaluated after 28 days of intervention. The [Ca2+]i elevating response to icing was enhanced by caffeine loading only in the SOL muscle, with the response present across a significantly higher temperature range than in the TA muscle under caffeine-loading conditions. In both the TA and SOL muscles, myofiber cross-sectional area (CSA) was decreased by chronic caffeine treatment (mean reductions of 10.5% and 20.4%, respectively). However, in the TA, but not the SOL, CSA was restored by icing (+15.4 ± 4.3% vs. noniced, P < 0.01). In the SOL, but not TA, icing + caffeine increased myofiber number (20.5 ± 6.7%, P < 0.05) and satellite cell density (2.5 ± 0.3-fold) in cross sections. These contrasting muscle responses to cooling and caffeine may reflect fiber-type-specific [Ca2+]i responses and/or differential responses to elevated [Ca2+]i.


Assuntos
Cafeína , Músculo Esquelético , Ratos , Animais , Cafeína/farmacologia , Músculo Esquelético/fisiologia , Temperatura Baixa , Aclimatação , Adaptação Fisiológica , Fibras Musculares de Contração Rápida , Fibras Musculares de Contração Lenta/fisiologia , Contração Muscular/fisiologia
6.
Eur J Clin Invest ; 53(7): e13981, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36912237

RESUMO

BACKGROUND: To what extent sex-related differences in cardiorespiratory fitness (CRF) impact postoperative patient mortality and corresponding implications for surgical risk stratification remains to be established. METHODS: To examine this, we recruited 640 patients (366 males vs. 274 females) who underwent cardiopulmonary exercise testing prior to elective colorectal surgery. Patients were defined high risk if peak oxygen uptake was <14.3 mL kg-1  min-1 and ventilatory equivalent for carbon dioxide at 'anaerobic threshold' >34. Between-sex CRF and mortality was assessed, and sex-specific CRF thresholds predictive of mortality was calculated. RESULTS: Seventeen percent of deaths were attributed to sub-threshold CRF, which was higher than established risk factors for cardiovascular disease (CVD). The group (independent of sex) exhibited a 5-fold higher mortality (high vs. low risk patients hazard ratio = 4.80, 95% confidence interval 2.73-8.45, p < 0.001). Females exhibited 39% lower CRF (p < 0.001) with more classified high risk than males (36 vs. 23%, p = 0.001), yet mortality was not different (p = 0.544). Upon reformulation of sex-specific CRF thresholds, lower cut-offs for mortality were observed in females, and consequently, fewer (20%) were stratified with sub-threshold CRF compared to the original 36% (p < 0.001). CONCLUSIONS: Low CRF accounted for more deaths than traditional CVD risk factors, and when CRF was considered relative to sex, the disproportionate number of females stratified unfit was corrected. These findings support clinical consideration of 'sex-specific' CRF thresholds to better inform postoperative mortality and improve surgical risk stratification.


Assuntos
Aptidão Cardiorrespiratória , Doenças Cardiovasculares , Masculino , Feminino , Humanos , Teste de Esforço , Fatores de Risco , Medição de Risco
7.
Adv Physiol Educ ; 47(1): 37-41, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36326476

RESUMO

Academic dishonesty is prevalent in universities in the form of cheating on examinations, with the problem being much greater in classes that have a large number of students that require close seating arrangements for in-class exams. The scenario described below was experienced during an in-class exam that included the possibility of an Honor Code violation between two students that was observed independently by three different faculty proctors. Herein we detail an objective, statistical approach taken to maintain exam and academic integrity that is compelling and transparent to students and the University Honor Council. Using the established error-similarity analysis for multiple-choice exams, it was determined that the number of identical incorrect answers found on the exams of the two individuals in question was sufficiently greater than the number expected by chance (probability of P < 0.00001). The number of total identical incorrect answers found on the remaining exams (across 65 students, n = 89 comparisons) was plotted as function of the number of total incorrect answers found on these exams (incorrect answers ranged from 1 to 22) and clearly supported that there was an Honor Code violation between the two students in question. The techniques used herein established, beyond a reasonable doubt, that a form of cheating had occurred between these students. However, caution must be taken as further investigation is requisite to establish whether the Honor Code violation was unidirectional (one student copying off the other) or bidirectional (collusion between the two students) in nature.NEW & NOTEWORTHY Academic dishonesty is prevalent in universities, especially on examinations with a large number of students in close seating arrangements. Cheating on a multiple-choice exam was suspected by observations from proctors of the examination. Application of error-similarity analysis associated with identical incorrect answers demonstrated that the probability of cheating was confirmed (P < 0.00001) between two examinees. Further comparisons with the remaining exams provided graphic evidence that a violation of the University's Honor Code had occurred.


Assuntos
Enganação , Estudantes , Humanos , Universidades
8.
Am J Physiol Regul Integr Comp Physiol ; 322(1): R14-R27, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34755549

RESUMO

Eccentric contractions (ECC) facilitate cytosolic calcium ion (Ca2+) release from the sarcoplasmic reticulum (SR) and Ca2+ influx from the extracellular space. Ca2+ is a vital signaling messenger that regulates multiple cellular processes via its spatial and temporal concentration ([Ca2+]i) dynamics. We hypothesized that 1) a specific pattern of spatial/temporal intramyocyte Ca2+ dynamics portends muscle damage following ECC and 2) these dynamics would be regulated by the ryanodine receptor (RyR). [Ca2+]i in the tibialis anterior muscles of anesthetized adult Wistar rats was measured by ratiometric (i.e., ratio, R, 340/380 nm excitation) in vivo bioimaging with Fura-2 pre-ECC and at 5 and 24 h post-ECC (5 × 40 contractions). Separate groups of rats received RyR inhibitor dantrolene (DAN; 10 mg/kg ip) immediately post-ECC (+DAN). Muscle damage was evaluated by histological analysis on hematoxylin-eosin stained muscle sections. Compared with control (CONT, no ECC), [Ca2+]i distribution was heterogeneous with increased percent total area of high [Ca2+]i sites (operationally defined as R ≥ 1.39, i.e., ≥1 SD of mean control) 5 h post-ECC (CONT, 14.0 ± 8.0; ECC5h: 52.0 ± 7.4%, P < 0.01). DAN substantially reduced the high [Ca2+]i area 5 h post-ECC (ECC5h + DAN: 6.4 ± 3.1%, P < 0.01) and myocyte damage (ECC24h, 63.2 ± 1.0%; ECC24h + DAN: 29.1 ± 2.2%, P < 0.01). Temporal and spatially amplified [Ca2+]i fluctuations occurred regardless of DAN (ECC vs. ECC + DAN, P > 0.05). These results suggest that the RyR-mediated local high [Ca2+]i itself is related to the magnitude of muscle damage, whereas the [Ca2+]i fluctuation is an RyR-independent phenomenon.


Assuntos
Sinalização do Cálcio , Cálcio/metabolismo , Contração Muscular , Fibras Musculares de Contração Rápida/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Animais , Autólise , Bloqueadores dos Canais de Cálcio/farmacologia , Sinalização do Cálcio/efeitos dos fármacos , Calpaína/metabolismo , Dantroleno/farmacologia , Desmina/metabolismo , Cinética , Masculino , Fibras Musculares de Contração Rápida/efeitos dos fármacos , Fibras Musculares de Contração Rápida/patologia , Ratos Wistar
9.
Microvasc Res ; 141: 104334, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35104507

RESUMO

Pulmonary hypertension (PH) has previously been characterized as a disease of the pulmonary vasculature that subsequently results in myocardial dysfunction. Heart failure compromises skeletal muscle microvascular function, which contributes to exercise intolerance. Therefore, we tested the hypothesis that such changes might be present in PH. Thus, we investigated skeletal muscle oxygen (O2) transport in the rat model of PH to determine if O2 delivery (Q̇O2) is impaired at the level of the microcirculation as evidenced via reduced red blood cell (RBC) flux, velocity, hematocrit, and percentage of capillaries flowing in quiescent muscle. Adult male Sprague-Dawley rats were randomized into healthy (n = 9) and PH groups (n = 9). Progressive PH was induced via a one-time intraperitoneal injection of monocrotaline (MCT; 50 mg/kg) and rats were monitored weekly via echocardiography. Intravital microscopy in the spinotrapezius muscle was performed when echocardiograms confirmed moderate PH (preceding right ventricular (RV) failure). At 25 ± 9 days post-MCT, PH rats displayed RV hypertrophy (RV/(Left ventricle + Septum): 0.28 ± 0.05 vs. 0.44 ± 0.11), pulmonary congestion, and increased right ventricular systolic pressure (21 ± 8 vs. 55 ± 14 mm Hg) compared to healthy rats (all P < 0.05). Reduced capillary RBC velocity (403 ± 140 vs. 227 ± 84 µm/s; P = 0.01), RBC flux (33 ± 12 vs. 23 ± 5 RBCs/s; P = 0.04) and % of capillaries supporting continuous RBC flux at rest (79 ± 8 vs. 56 ± 13%; P = 0.01) were evident in PH rats compared to healthy rats. When Q̇O2 within a given field of view was quantified (RBC flux x % of capillaries supporting continuous RBC flux), PH rats demonstrated lower overall Q̇O2 (↓ 50%; P = 0.002). These data support that microcirculatory hemodynamic impairments (↓ Q̇O2 and therefore altered Q̇O2-to-V̇O2 matching) may compromise blood-myocyte O2 transport in PH. The mechanistic bases for decreased capillary RBC flux, velocity, and percentage of capillaries supporting RBC flow remains an important topic.


Assuntos
Insuficiência Cardíaca , Hipertensão Pulmonar , Animais , Hemodinâmica , Hipertensão Pulmonar/induzido quimicamente , Masculino , Microcirculação , Músculo Esquelético/irrigação sanguínea , Oxigênio , Ratos , Ratos Sprague-Dawley
10.
Microvasc Res ; 140: 104283, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34822837

RESUMO

Post-occlusive reactive hyperemia (PORH) is an accepted diagnostic tool for assessing peripheral macrovascular function. While conduit artery hemodynamics have been well defined, the impact of PORH on capillary hemodynamics remains unknown, despite the microvasculature being the dominant site of vascular control. Therefore, the purpose of this investigation was to determine the effects of 5 min of feed artery occlusion on capillary hemodynamics in skeletal muscle. We tested the hypothesis that, upon release of arterial occlusion, there would be: 1) an increased red blood cell flux (fRBC) and red blood cell velocity (VRBC), and 2) a decreased proportion of capillaries supporting RBC flow compared to the pre-occlusion condition. METHODS: In female Sprague-Dawley rats (n = 6), the spinotrapezius muscle was exteriorized for evaluation of capillary hemodynamics pre-occlusion, 5 min of feed artery occlusion (Occ), and 5 min of reperfusion (Post-Occ). RESULTS: There were no differences in mean arterial pressure (MAP) or capillary diameter (Dc) between pre-occlusion and post-occlusion (P > 0.05). During 30 s of PORH, capillary fRBC was increased (pre: 59 ± 4 vs. 30 s-post: 77 ± 2 cells/s; P < 0.05) and VRBC was not changed (pre: 300 ± 24 vs. 30 s post: 322 ± 25 µm/s; P > 0.05). Capillary hematocrit (Hctcap) was unchanged across the pre- to post-occlusion conditions (P > 0.05). Following occlusion, there was a 20-30% decrease in the number of capillaries supporting RBC flow at 30 s and 300 s-post occlusion (pre: 92 ± 2%; 30 s-post: 66 ± 3%; 300 s-post: 72 ± 6%; both P < 0.05). CONCLUSION: Short-term feed artery occlusion (i.e. 5 min) resulted in a more heterogeneous capillary flow profile with the presence of capillary no-reflow, decreasing the percentage of capillaries supporting RBC flow. A complex interaction between myogenic and metabolic mechanisms at the arteriolar level may play a role in the capillary no-reflow with PORH. Measurements at the level of the conduit artery mask significant alterations in blood flow distribution in the microcirculation.


Assuntos
Capilares/fisiopatologia , Hemodinâmica , Hiperemia/fisiopatologia , Microcirculação , Músculo Esquelético/irrigação sanguínea , Animais , Velocidade do Fluxo Sanguíneo , Capilares/metabolismo , Eritrócitos/metabolismo , Feminino , Hiperemia/sangue , Microscopia Intravital , Microscopia de Vídeo , Músculo Esquelético/metabolismo , Fenômeno de não Refluxo/sangue , Fenômeno de não Refluxo/fisiopatologia , Ratos Sprague-Dawley , Fatores de Tempo
11.
Exp Physiol ; 107(8): 787-799, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35579479

RESUMO

NEW FINDINGS: What is the topic of this review? The relationships and physiological mechanisms underlying the clinical benefits of cardiorespiratory fitness (CRF) in patients undergoing major intra-abdominal surgery. What advances does it highlight? Elevated CRF reduces postoperative morbidity/mortality, thus highlighting the importance of CRF as an independent risk factor. The vascular protection afforded by exercise prehabilitation can further improve surgical risk stratification and postoperative outcomes. ABSTRACT: Surgery accounts for 7.7% of all deaths globally and the number of procedures is increasing annually. A patient's 'fitness for surgery' describes the ability to tolerate a physiological insult, fundamental to risk assessment and care planning. We have evolved as obligate aerobes that rely on oxygen (O2 ). Systemic O2 consumption can be measured via cardiopulmonary exercise testing (CPET) providing objective metrics of cardiorespiratory fitness (CRF). Impaired CRF is an independent risk factor for mortality and morbidity. The perioperative period is associated with increased O2 demand, which if not met leads to O2 deficit, the magnitude and duration of which dictates organ failure and ultimately death. CRF is by far the greatest modifiable risk factor, and optimal exercise interventions are currently under investigation in patient prehabilitation programmes. However, current practice demonstrates potential for up to 60% of patients, who undergo preoperative CPET, to have their fitness incorrectly stratified. To optimise this work we must improve the detection of CRF and reduce potential for interpretive error that may misinform risk classification and subsequent patient care, better quantify risk by expressing the power of CRF to predict mortality and morbidity compared to traditional cardiovascular risk factors, and improve patient interventions with the capacity to further enhance vascular adaptation. Thus, a better understanding of CRF, used to determine fitness for surgery, will enable both clinicians and exercise physiologists to further refine patient care and management to improve survival.


Assuntos
Aptidão Cardiorrespiratória , Aptidão Cardiorrespiratória/fisiologia , Exercício Físico/fisiologia , Teste de Esforço/métodos , Humanos , Período Pós-Operatório , Medição de Risco
12.
Nitric Oxide ; 121: 34-44, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35123062

RESUMO

Progress in understanding physiological mechanisms often consists of discrete discoveries made across different models and species. Accordingly, understanding the mechanistic bases for how altering nitric oxide (NO) bioavailability impacts exercise tolerance (or not) depends on integrating information from cellular energetics and contractile regulation through microvascular/vascular control of O2 transport and pulmonary gas exchange. This review adopts state-of-the-art concepts including the intramyocyte power grid, the Wagner conflation of perfusive and diffusive O2 conductances, and the Critical Power/Critical Speed model of exercise tolerance to address how altered NO bioavailability may, or may not, affect physical performance. This question is germane from the elite athlete to the recreational exerciser and particularly the burgeoning heart failure (and other clinical) populations for whom elevating O2 transport and/or exercise capacity translates directly to improved life quality and reduced morbidity and mortality. The dearth of studies in females is also highlighted, and areas of uncertainty and questions for future research are identified.


Assuntos
Músculo Esquelético/metabolismo , Óxido Nítrico/metabolismo , Oxigênio/metabolismo , Humanos , Cinética , Contração Muscular
13.
Nitric Oxide ; 119: 1-8, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34871799

RESUMO

In heart failure with reduced ejection fraction (HFrEF), nitric oxide-soluble guanylyl cyclase (sGC) pathway dysfunction impairs skeletal muscle arteriolar vasodilation and thus capillary hemodynamics, contributing to impaired oxygen uptake (V̇O2) kinetics. Targeting this pathway with sGC activators offers a new treatment approach to HFrEF. We tested the hypotheses that sGC activator administration would increase the O2 delivery (Q̇O2)-to-V̇O2 ratio in the skeletal muscle interstitial space (PO2is) of HFrEF rats during twitch contractions due, in part, to increases in red blood cell (RBC) flux (fRBC), velocity (VRBC), and capillary hematocrit (Hctcap). HFrEF was induced in male Sprague-Dawley rats via myocardial infarction. After 3 weeks, rats were treated with 0.3 mg/kg of the sGC activator BAY 60-2770 (HFrEF + BAY; n = 11) or solvent (HFrEF; n = 9) via gavage b.i.d for 5 days prior to phosphorescence quenching (PO2is, in contracting muscle) and intravital microscopy (resting) measurements in the spinotrapezius muscle. Intravital microscopy revealed higher fRBC (70 ± 9 vs 25 ± 8 RBC/s), VRBC (490 ± 43 vs 226 ± 35 µm/s), Hctcap (16 ± 1 vs 10 ± 1%) and a greater number of capillaries supporting flow (91 ± 3 vs 82 ± 3%) in HFrEF + BAY vs HFrEF (all P < 0.05). Additionally, PO2is was especially higher during 12-34s of contractions in HFrEF + BAY vs HFrEF (P < 0.05). Our findings suggest that sGC activators improved resting Q̇O2 via increased fRBC, VRBC, and Hctcap allowing for better Q̇O2-to-V̇O2 matching during the rest-contraction transient, supporting sGC activators as a potential therapeutic to target skeletal muscle vasomotor dysfunction in HFrEF.


Assuntos
Benzoatos/farmacologia , Compostos de Bifenilo/farmacologia , Capilares/metabolismo , Insuficiência Cardíaca/sangue , Hidrocarbonetos Fluorados/farmacologia , Músculo Esquelético/metabolismo , Oxigênio/metabolismo , Guanilil Ciclase Solúvel/metabolismo , Animais , Monitorização Transcutânea dos Gases Sanguíneos , Hemodinâmica , Masculino , Ratos Sprague-Dawley
14.
Eur J Appl Physiol ; 122(1): 7-28, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34940908

RESUMO

Resting humans transport ~ 100 quintillion (1018) oxygen (O2) molecules every second to tissues for consumption. The final, short distance (< 50 µm) from capillary to the most distant mitochondria, in skeletal muscle where exercising O2 demands may increase 100-fold, challenges our understanding of O2 transport. To power cellular energetics O2 reaches its muscle mitochondrial target by dissociating from hemoglobin, crossing the red cell membrane, plasma, endothelial surface layer, endothelial cell, interstitial space, myocyte sarcolemma and a variable expanse of cytoplasm before traversing the mitochondrial outer/inner membranes and reacting with reduced cytochrome c and protons. This past century our understanding of O2's passage across the body's final O2 frontier has been completely revised. This review considers the latest structural and functional data, challenging the following entrenched notions: (1) That O2 moves freely across blood cell membranes. (2) The Krogh-Erlang model whereby O2 pressure decreases systematically from capillary to mitochondria. (3) Whether intramyocyte diffusion distances matter. (4) That mitochondria are separate organelles rather than coordinated and highly plastic syncytia. (5) The roles of free versus myoglobin-facilitated O2 diffusion. (6) That myocytes develop anoxic loci. These questions, and the intriguing notions that (1) cellular membranes, including interconnected mitochondrial membranes, act as low resistance conduits for O2, lipids and H+-electrochemical transport and (2) that myoglobin oxy/deoxygenation state controls mitochondrial oxidative function via nitric oxide, challenge established tenets of muscle metabolic control. These elements redefine muscle O2 transport models essential for the development of effective therapeutic countermeasures to pathological decrements in O2 supply and physical performance.


Assuntos
Capilares/fisiologia , Mitocôndrias/metabolismo , Músculo Esquelético/metabolismo , Oxigênio/metabolismo , Eritrócitos/metabolismo , Exercício Físico/fisiologia , Humanos , Mioglobina/metabolismo
15.
J Physiol ; 599(3): 889-910, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-31977068

RESUMO

Three sentinel parameters of aerobic performance are the maximal oxygen uptake ( V̇O2max ), critical power (CP) and speed of the V̇O2 kinetics following exercise onset. Of these, the latter is, perhaps, the cardinal test of integrated function along the O2 transport pathway from lungs to skeletal muscle mitochondria. Fast V̇O2 kinetics demands that the cardiovascular system distributes exercise-induced blood flow elevations among and within those vascular beds subserving the contracting muscle(s). Ideally, this process must occur at least as rapidly as mitochondrial metabolism elevates V̇O2 . Chronic disease and ageing create an O2 delivery (i.e. blood flow × arterial [O2 ], Q̇O2 ) dependency that slows V̇O2 kinetics, decreasing CP and V̇O2max , increasing the O2 deficit and sowing the seeds of exercise intolerance. Exercise training, in contrast, does the opposite. Within the context of these three parameters (see Graphical Abstract), this brief review examines the training-induced plasticity of key elements in the O2 transport pathway. It asks how structural and functional vascular adaptations accelerate and redistribute muscle Q̇O2 and thus defend microvascular O2 partial pressures and capillary blood-myocyte O2 diffusion across a ∼100-fold range of muscle V̇O2 values. Recent discoveries, especially in the muscle microcirculation and Q̇O2 -to- V̇O2 heterogeneity, are integrated with the O2 transport pathway to appreciate how local and systemic vascular control helps defend V̇O2 kinetics and determine CP and V̇O2max in health and how vascular dysfunction in disease predicates exercise intolerance. Finally, the latest evidence that nitrate supplementation improves vascular and therefore aerobic function in health and disease is presented.


Assuntos
Tolerância ao Exercício , Consumo de Oxigênio , Exercício Físico , Mitocôndrias Musculares/metabolismo , Músculo Esquelético/metabolismo , Oxigênio/metabolismo
16.
J Physiol ; 599(3): 737-767, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33112439

RESUMO

The anaerobic threshold (AT) remains a widely recognized, and contentious, concept in exercise physiology and medicine. As conceived by Karlman Wasserman, the AT coalesced the increase of blood lactate concentration ([La- ]), during a progressive exercise test, with an excess pulmonary carbon dioxide output ( V̇CO2 ). Its principal tenets were: limiting oxygen (O2 ) delivery to exercising muscle→increased glycolysis, La- and H+ production→decreased muscle and blood pH→with increased H+ buffered by blood [HCO3- ]→increased CO2 release from blood→increased V̇CO2 and pulmonary ventilation. This schema stimulated scientific scrutiny which challenged the fundamental premise that muscle anoxia was requisite for increased muscle and blood [La- ]. It is now recognized that insufficient O2 is not the primary basis for lactataemia. Increased production and utilization of La- represent the response to increased glycolytic flux elicited by increasing work rate, and determine the oxygen uptake ( V̇O2 ) at which La- accumulates in the arterial blood (the lactate threshold; LT). However, the threshold for a sustained non-oxidative contribution to exercise energetics is the critical power, which occurs at a metabolic rate often far above the LT and separates heavy from very heavy/severe-intensity exercise. Lactate is now appreciated as a crucial energy source, major gluconeogenic precursor and signalling molecule but there is no ipso facto evidence for muscle dysoxia or anoxia. Non-invasive estimation of LT using the gas exchange threshold (non-linear increase of V̇CO2 versus V̇O2 ) remains important in exercise training and in the clinic, but its conceptual basis should now be understood in light of lactate shuttle biology.


Assuntos
Limiar Anaeróbio , Teste de Esforço , Exercício Físico , Ácido Láctico , Consumo de Oxigênio , Troca Gasosa Pulmonar
17.
J Physiol ; 599(13): 3279-3293, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34101850

RESUMO

KEY POINTS: Inhibition of pancreatic ATP-sensitive K+ (KATP ) channels is the intended effect of oral sulphonylureas to increase insulin release in diabetes. However, pertinent to off-target effects of sulphonylurea medication, sex differences in cardiac KATP channel function exist, whereas potential sex differences in vascular KATP channel function remain unknown. In the present study, we assessed vascular KATP channel function (topical glibenclamide superfused onto fast-twitch oxidative skeletal muscle) supporting blood flow and interstitial O2 delivery-utilization matching ( PO2 is) during twitch contractions in male, female during pro-oestrus and ovariectomized female (F+OVX) rats. Glibenclamide decreased blood flow (convective O2 transport) and interstitial PO2 in male and female, but not F+OVX, rats. Compared to males, females also demonstrated impaired diffusive O2 transport and a faster fall in interstitial PO2 . Our demonstration, in rats, that sex differences in vascular KATP channel function exist support the tentative hypothesis that oral sulphonylureas may exacerbate exercise intolerance and morbidity, especially in premenopausal females. ABSTRACT: Vascular ATP-sensitive K+ (KATP ) channels support skeletal muscle blood flow ( Q̇m ), interstitial O2 delivery ( Q̇O2 )-utilization ( V̇O2 ) matching (i.e. interstitial-myocyte O2 flux driving pressure; PO2 is) and exercise tolerance. Potential sex differences in skeletal muscle vascular KATP channel function remain largely unexplored. We hypothesized that local skeletal muscle KATP channel inhibition via glibenclamide superfusion (5 mg kg-1 GLI; sulphonylurea diabetes medication) in anaesthetized female Sprague-Dawley rats, compared to males, would demonstrate greater reductions in contracting (1 Hz, 7 V, 180 s) fast-twitch oxidative mixed gastrocnemius (97% type IIA+IID/X+IIB) Q̇m (15 µm microspheres) and PO2 is (phosphorescence quenching), resulting from more compromised convective ( Q̇O2 ) and diffusive ( DO2  ) O2 conductances. Furthermore, these GLI-induced reductions in ovary-intact females measured during pro-oestrus would be diminished following ovariectomy (F+OVX). GLI similarly impaired mixed gastrocnemius V̇O2 in both males (↓28%) and females (↓33%, both P < 0.032) via reduced Q̇m (male: ↓31%, female: ↓35%, both P < 0.020), Q̇O2 (male: 5.6 ± 0.5 vs. 4.0 ± 0.5, female: 6.4 ± 1.1 vs. 4.2 ± 0.6 mL O2  min-1 100 g tissue-1 , P < 0.022) and the resulting PO2 is, with females also demonstrating a reduced DO2  (0.40 ± 0.07 vs. 0.30 ± 0.04 mL O2  min-1 100 g tissue-1 , P < 0.042) and a greater GLI-induced speeding of PO2 is fall (mean response time: Sex × Drug interaction, P = 0.026). Conversely, GLI did not impair the mixed gastrocnemius of F+OVX rats. Therefore, in patients taking sulphonylureas, these results support the potential for impaired vascular KATP channel function to compromise muscle Q̇m and therefore exercise tolerance. Such an effect, if present, would likely contribute to adverse cardiovascular events in premenopausal females more than males.


Assuntos
Contração Muscular , Caracteres Sexuais , Trifosfato de Adenosina/metabolismo , Animais , Feminino , Humanos , Masculino , Músculo Esquelético/metabolismo , Consumo de Oxigênio , Ratos , Ratos Sprague-Dawley
18.
Microcirculation ; 28(8): e12727, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34467606

RESUMO

INTRODUCTION: Prolonged mechanical ventilation (MV; ≥6 h) results in large, time-dependent reductions in diaphragmatic blood flow and shear stress. We tested the hypothesis that MV would impair the structural and material properties (ie, increased stress/stretch relation and/or circumferential stretch) of first-order arterioles (1A) from the medial costal diaphragm. METHODS: Shear stress was estimated from isolated arterioles and prior blood flow data from the diaphragm during spontaneous breathing (SB) and prolonged MV (6 h MV). Thereafter, female Sprague-Dawley rats (~5 months) were randomly divided into two groups, SB (n = 6) and 6 h MV (n = 6). Following SB and 6 h MV, 1A medial costal diaphragm arterioles were isolated, cannulated, and subjected to stepwise (0-140 cmH2 O) increases in intraluminal pressure in calcium-free Ringer's solution. Inner diameter and wall thickness were measured at each pressure step and used to calculate wall:lumen ratio, Cauchy-stress, and circumferential stretch. RESULTS: Compared to SB, there was a ~90% reduction in arteriolar shear stress with prolonged MV (9 ± 2 vs 78 ± 20 dynes/cm2 ; p ≤ .05). In the unloaded condition (0 cmH2 O), the arteriolar intraluminal diameter was reduced (37 ± 8 vs 79 ± 13 µm) and wall:lumen ratio was increased (120 ± 18 vs 46 ± 10%) compared to SB (p ≤ .05). There were no differences in the passive diameter responses or the circumferential stress/stretch relationship between groups (p > .05), but at each pressure step, circumferential stretch was increased with 6 h MV vs SB (p ≤ .05). CONCLUSION: During prolonged MV, medial costal diaphragm arteriolar shear stress is severely diminished. Despite no change in the material behavior (stress/stretch), prolonged MV resulted in altered structural and mechanical properties (ie, elevated circumferential stretch) of medial costal diaphragm arterioles. This provides important novel mechanistic insights into the impaired diaphragm blood flow capacity and vascular dysfunction following prolonged MV.


Assuntos
Diafragma , Respiração Artificial , Animais , Arteríolas , Diafragma/fisiologia , Feminino , Contração Muscular/fisiologia , Ratos , Ratos Sprague-Dawley , Respiração Artificial/efeitos adversos , Respiração Artificial/métodos , Ventiladores Mecânicos
19.
Am J Physiol Regul Integr Comp Physiol ; 320(4): R384-R392, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33407019

RESUMO

Heat stress, via its effects on muscle intracellular Ca2+ concentrations ([Ca2+]i), has been invoked as a putative therapeutic countermeasure to type 1 diabetes-induced muscle atrophy. Using a circulation- and neurally intact in vivo muscle preparation, we tested the hypothesis that impaired muscle Ca2+ homeostasis in type 1 diabetic rats is due to attenuated heat stress tolerance mediated via transient receptor potential vanilloid 1 (TRPV1). Male Wistar rats were randomly assigned to one of the following four groups: 1) healthy control 30°C (CONT 30°C); 2) CONT 40°C; 3) diabetes 30°C (DIA 30°C); and 4) DIA 40°C. The temperature of 40°C was selected because it exceeds the TRPV1 activation threshold. Spinotrapezius muscles of Wistar rats were exteriorized in vivo and loaded with the fluorescent Ca2+ probe Fura-2 AM. [Ca2+]i was estimated over 20 min using fluorescence microscopy (340/380 nm ratio) in quiescent muscle held at the required temperature, using a calibrated heat source applied to the ventral muscle surface. Western blotting was performed to determine the protein expression levels of TRPV1 in spinotrapezius muscle. After 20 min of heat stress, the CONT 40°C condition induced a 12.3 ± 5% [Ca2+]i (P < 0.05) elevation that was markedly absent in the DIA 40°C or other conditions. Thus, no significant differences were found among DIA 40°C, DIA 30°C, and CONT 30°C. TRPV1 protein expression was decreased by 42.0 ± 9% in DIA compared with CONT (P < 0.05) and, unlike CONT, heat stress did not increase TRPV1 phosphorylation. In conclusion, diabetes suppresses TRPV1 protein expression and function and inhibits the elevated myocyte [Ca2+]i evoked normally by heat stress. These results suggest that capsaicin or other therapeutic strategies to increase Ca2+ accumulation via TRPV1 might be more effective than hyperthermic therapy for type 1 diabetic patients.


Assuntos
Cálcio/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Transtornos de Estresse por Calor/metabolismo , Músculo Esquelético/metabolismo , Canais de Cátion TRPV/metabolismo , Animais , Glicemia/metabolismo , Capsaicina/farmacologia , Diabetes Mellitus Experimental/fisiopatologia , Diabetes Mellitus Tipo 1/fisiopatologia , Transtornos de Estresse por Calor/fisiopatologia , Homeostase , Masculino , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/fisiopatologia , Fosforilação , Ratos Wistar , Canais de Cátion TRPV/agonistas , Fatores de Tempo
20.
Am J Physiol Regul Integr Comp Physiol ; 321(5): R712-R722, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34431402

RESUMO

This study tested the hypothesis that the respiratory compensation point (RCP) and breakpoint in deoxygenated [heme] [deoxy[heme]BP, assessed via near-infrared spectroscopy (NIRS)] during ramp incremental exercise would occur at the same metabolic rate in the upright (U) and supine (S) body positions. Eleven healthy men completed ramp incremental exercise tests in U and S. Gas exchange was measured breath-by-breath and time-resolved-NIRS was used to measure deoxy[heme] in the vastus lateralis (VL) and rectus femoris (RF). RCP (S: 2.56 ± 0.39, U: 2.86 ± 0.40 L·min-1, P = 0.02) differed from deoxy[heme]BP in the VL in U (3.10 ± 0.44 L·min-1, P = 0.002), but was not different in S in the VL (2.70 ± 0.50 L·min-1, P = 0.15). RCP was not different from the deoxy[heme]BP in the RF for either position (S: 2.34 ± 0.48 L·min-1, U: 2.76 ± 0.53 L·min-1, P > 0.05). However, the deoxy[heme]BP differed between muscles in both positions (P < 0.05), and changes in deoxy[heme]BP did not relate to ΔRCP between positions (VL: r = 0.55, P = 0.080, RF: r = 0.26, P = 0.44). The deoxy[heme]BP was consistently preceded by a breakpoint in total[heme], and was, in turn, itself preceded by a breakpoint in muscle surface electromyography (EMG). RCP and the deoxy[heme]BP can be dissociated across muscles and different body positions and, therefore, do not represent the same underlying physiological phenomenon. The deoxy[heme]BP may, however, be mechanistically related to breakpoints in total[heme] and muscle activity.


Assuntos
Metabolismo Energético , Exercício Físico , Hemoglobinas/metabolismo , Contração Muscular , Mioglobina/sangue , Consumo de Oxigênio , Troca Gasosa Pulmonar , Músculo Quadríceps/metabolismo , Decúbito Dorsal , Adolescente , Adulto , Biomarcadores/sangue , Eletromiografia , Voluntários Saudáveis , Humanos , Masculino , Espectroscopia de Luz Próxima ao Infravermelho , Fatores de Tempo , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA