Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
EMBO Rep ; 25(3): 951-970, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38287192

RESUMO

The exquisite specificity of antibodies can be harnessed to effect targeted degradation of membrane proteins. Here, we demonstrate targeted protein removal utilising a protein degradation domain derived from the endogenous human protein Proprotein Convertase Subtilisin/Kexin type 9 (PCSK9). Recombinant antibodies genetically fused to this domain drive the degradation of membrane proteins that undergo constitutive internalisation and recycling, including the transferrin receptor and the human cytomegalovirus latency-associated protein US28. We term this approach PACTAC (PCSK9-Antibody Clearance-Targeting Chimeras).


Assuntos
Pró-Proteína Convertase 9 , Serina Endopeptidases , Humanos , Pró-Proteína Convertase 9/metabolismo , Pró-Proteína Convertases/metabolismo , Proteínas de Membrana , Receptores de LDL/metabolismo
2.
Proc Natl Acad Sci U S A ; 118(9)2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33619107

RESUMO

Reactivation of human cytomegalovirus (HCMV) from latency is a major health consideration for recipients of stem-cell and solid organ transplantations. With over 200,000 transplants taking place globally per annum, virus reactivation can occur in more than 50% of cases leading to loss of grafts as well as serious morbidity and even mortality. Here, we present the most extensive screening to date of epigenetic inhibitors on HCMV latently infected cells and find that histone deacetylase inhibitors (HDACis) and bromodomain inhibitors are broadly effective at inducing virus immediate early gene expression. However, while HDACis, such as myeloid-selective CHR-4487, lead to production of infectious virions, inhibitors of bromodomain (BRD) and extraterminal proteins (I-BETs), including GSK726, restrict full reactivation. Mechanistically, we show that BET proteins (BRDs) are pivotally connected to regulation of HCMV latency and reactivation. Through BRD4 interaction, the transcriptional activator complex P-TEFb (CDK9/CycT1) is sequestered by repressive complexes during HCMV latency. Consequently, I-BETs allow release of P-TEFb and subsequent recruitment to promoters via the superelongation complex (SEC), inducing transcription of HCMV lytic genes encoding immunogenic antigens from otherwise latently infected cells. Surprisingly, this occurs without inducing many viral immunoevasins and, importantly, while also restricting viral DNA replication and full HCMV reactivation. Therefore, this pattern of HCMV transcriptional dysregulation allows effective cytotoxic immune targeting and killing of latently infected cells, thus reducing the latent virus genome load. This approach could be safely used to pre-emptively purge the virus latent reservoir prior to transplantation, thereby reducing HCMV reactivation-related morbidity and mortality.


Assuntos
Proteínas de Ciclo Celular/genética , Citomegalovirus/imunologia , DNA Viral/genética , Epigênese Genética , Histona Desacetilases/genética , Fator B de Elongação Transcricional Positiva/genética , Fatores de Transcrição/genética , Azepinas/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Benzodiazepinas/farmacologia , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/imunologia , Ciclina T/genética , Ciclina T/imunologia , Quinase 9 Dependente de Ciclina/genética , Quinase 9 Dependente de Ciclina/imunologia , Citomegalovirus/efeitos dos fármacos , Citomegalovirus/genética , Infecções por Citomegalovirus/genética , Infecções por Citomegalovirus/imunologia , Infecções por Citomegalovirus/patologia , Replicação do DNA/efeitos dos fármacos , DNA Viral/antagonistas & inibidores , DNA Viral/imunologia , Genes Precoces , Genes Reporter , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/imunologia , Interações Hospedeiro-Patógeno , Humanos , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Modelos Biológicos , Fator B de Elongação Transcricional Positiva/imunologia , Cultura Primária de Células , Regiões Promotoras Genéticas , Linfócitos T Citotóxicos/efeitos dos fármacos , Linfócitos T Citotóxicos/imunologia , Linfócitos T Citotóxicos/virologia , Células THP-1 , Talidomida/análogos & derivados , Talidomida/farmacologia , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/imunologia , Transcrição Gênica , Ativação Viral/efeitos dos fármacos , Latência Viral/efeitos dos fármacos
3.
J Med Virol ; 95(11): e29227, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-38009611

RESUMO

Human cytomegalovirus (HCMV) can undergo either a latent or a lytic infection in cells of the myeloid lineage. Whilst the molecular mechanisms which determine the outcome of infection are far from clear, it is well established that a key factor is the differential regulation of the major immediate early promoter (MIEP) responsible for driving lytic immediate early gene expression. Using a myelomonocytic cell line stably transduced with a GFP reporter under the control of the MIEP, which recapitulates MIEP regulation in the context of virus infection, we have used an unbiased CRISPR-Cas9 sub-genomic, epigenetic library screen to identify novel cellular factors involved in MIEP repression during establishment and maintenance of latency in myeloid cells. One such cellular factor identified was MORC3. Consistent with MORC3 being a robust repressor of the MIEP, we show that THP1 cells devoid of MORC3 fail to establish latency. We also show that MORC3 is induced during latent infection, recruited to the MIEP and forms MORC3 nuclear bodies (MORC3-NBs) which, interestingly, co-localize with viral genomes. Finally, we show that the latency-associated functions of MORC3 are regulated by the deSUMOylase activity of the viral latency-associated LUNA protein likely to prevent untimely HCMV reactivation.


Assuntos
Adenosina Trifosfatases , Infecções por Citomegalovirus , Proteínas de Ligação a DNA , Corpos Nucleares da Leucemia Promielocítica , Humanos , Adenosina Trifosfatases/genética , Citomegalovirus/genética , Proteínas de Ligação a DNA/genética , Regulação Viral da Expressão Gênica , Células Mieloides , Latência Viral/genética
4.
J Gen Virol ; 102(5)2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34042564

RESUMO

Viral latency is an active process during which the host cell environment is optimized for latent carriage and reactivation. This requires control of both viral and host gene promoters and enhancers often at the level of chromatin, and several viruses co-opt the chromatin organiser CTCF to control gene expression during latency. While CTCF has a role in the latencies of alpha- and gamma-herpesviruses, it was not known whether CTCF played a role in the latency of the beta-herpesvirus human cytomegalovirus (HCMV). Here, we show that HCMV latency is associated with increased CTCF expression and CTCF binding to the viral major lytic promoter, the major immediate early promoter (MIEP). This increase in CTCF binding is dependent on the virally encoded G protein coupled receptor, US28, and contributes to suppression of MIEP-driven transcription, a hallmark of latency. Furthermore, we show that latency-associated upregulation of CTCF represses expression of the neutrophil chemoattractants S100A8 and S100A9 which we have previously shown are downregulated during HCMV latency. As with downregulation of the MIEP, CTCF binding to the enhancer region of S100A8/A9 drives their suppression, again in a US28-dependent manner. Taken together, we identify CTCF upregulation as an important mechanism for optimizing latent carriage of HCMV at both the levels of viral and cellular gene expression.


Assuntos
Fator de Ligação a CCCTC/metabolismo , Infecções por Citomegalovirus/virologia , Citomegalovirus/fisiologia , Receptores de Quimiocinas/metabolismo , Proteínas Virais/metabolismo , Latência Viral , Fator de Ligação a CCCTC/genética , Calgranulina A/genética , Calgranulina B/genética , Elementos Facilitadores Genéticos , Regulação da Expressão Gênica , Genes Precoces/genética , Interações Hospedeiro-Patógeno , Humanos , Monócitos/virologia , Regiões Promotoras Genéticas
5.
Reproduction ; 163(1): 45-56, 2021 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-34866595

RESUMO

Exposure of mouse oocytes to saturated fatty acids (FAs) such as palmitic acid (PA) has been shown to increase lipid content and cause an endoplasmic reticulum (ER) stress response and changes in the mitochondrial redox state. PA can also disrupt Ca2+ stores in other cell types. The links between these intracellular changes, or whether they are prevented by mono-unsaturated FAs such as oleic acid (OA), is unclear. Here, we have investigated the effects of FAs on mouse oocytes, that are maturated in vitro, using coherent anti-Stokes Raman scattering and two-photon fluorescence microscopy. When oocytes were matured in the presence of PA, there were changes in the aggregation pattern and size of lipid droplets that were mitigated by co-incubation in OA. Maturation in PA alone also caused a distinctive disruption of the ER structure. This effect was prevented by incubation of OA with PA. In contrast, maturation of mouse oocytes in medium containing PA was not associated with any significant change in the redox state of mitochondria or the Ca2+ content of intracellular stores. These data suggest that a primary effect of saturated FAs such as PA on oocytes is to disrupt the structure of the ER and this is not due to an effect on the mitochondria or Ca2+ stores.


Assuntos
Retículo Endoplasmático , Ácido Palmítico , Animais , Estresse do Retículo Endoplasmático , Camundongos , Ácido Oleico/farmacologia , Oócitos/metabolismo , Ácido Palmítico/metabolismo , Ácido Palmítico/farmacologia
6.
J Am Chem Soc ; 142(42): 18022-18034, 2020 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-32935985

RESUMO

Multivalent lectin-glycan interactions are widespread in biology and are often exploited by pathogens to bind and infect host cells. Glycoconjugates can block such interactions and thereby prevent infection. The inhibition potency strongly depends on matching the spatial arrangement between the multivalent binding partners. However, the structural details of some key lectins remain unknown and different lectins may exhibit overlapping glycan specificity. This makes it difficult to design a glycoconjugate that can potently and specifically target a particular multimeric lectin for therapeutic interventions, especially under the challenging in vivo conditions. Conventional techniques such as surface plasmon resonance (SPR) and isothermal titration calorimetry (ITC) can provide quantitative binding thermodynamics and kinetics. However, they cannot reveal key structural information, e.g., lectin's binding site orientation, binding mode, and interbinding site spacing, which are critical to design specific multivalent inhibitors. Herein we report that gold nanoparticles (GNPs) displaying a dense layer of simple glycans are powerful mechanistic probes for multivalent lectin-glycan interactions. They can not only quantify the GNP-glycan-lectin binding affinities via a new fluorescence quenching method, but also reveal drastically different affinity enhancing mechanisms between two closely related tetrameric lectins, DC-SIGN (simultaneous binding to one GNP) and DC-SIGNR (intercross-linking with multiple GNPs), via a combined hydrodynamic size and electron microscopy analysis. Moreover, a new term, potential of assembly formation (PAF), has been proposed to successfully predict the assembly outcomes based on the binding mode between GNP-glycans and lectins. Finally, the GNP-glycans can potently and completely inhibit DC-SIGN-mediated augmentation of Ebola virus glycoprotein-driven cell entry (with IC50 values down to 95 pM), but only partially block DC-SIGNR-mediated virus infection. Our results suggest that the ability of a glycoconjugate to simultaneously block all binding sites of a target lectin is key to robust inhibition of viral infection.


Assuntos
Carboidratos/uso terapêutico , Ouro/uso terapêutico , Doença pelo Vírus Ebola/tratamento farmacológico , Lectinas/uso terapêutico , Nanopartículas Metálicas/química , Sondas Moleculares/uso terapêutico , Polissacarídeos/uso terapêutico , Sítios de Ligação , Carboidratos/química , Ouro/química , Humanos , Lectinas/química , Ligantes , Sondas Moleculares/síntese química , Sondas Moleculares/química , Estrutura Molecular , Polissacarídeos/química
7.
J Am Chem Soc ; 139(34): 11833-11844, 2017 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-28786666

RESUMO

Multivalent protein-carbohydrate interactions initiate the first contacts between virus/bacteria and target cells, which ultimately lead to infection. Understanding the structures and binding modes involved is vital to the design of specific, potent multivalent inhibitors. However, the lack of structural information on such flexible, complex, and multimeric cell surface membrane proteins has often hampered such endeavors. Herein, we report that quantum dots (QDs) displayed with a dense array of mono-/disaccharides are powerful probes for multivalent protein-glycan interactions. Using a pair of closely related tetrameric lectins, DC-SIGN and DC-SIGNR, which bind to the HIV and Ebola virus glycoproteins (EBOV-GP) to augment viral entry and infect target cells, we show that such QDs efficiently dissect the different DC-SIGN/R-glycan binding modes (tetra-/di-/monovalent) through a combination of multimodal readouts: Förster resonance energy transfer (FRET), hydrodynamic size measurement, and transmission electron microscopy imaging. We also report a new QD-FRET method for quantifying QD-DC-SIGN/R binding affinity, revealing that DC-SIGN binds to the QD >100-fold tighter than does DC-SIGNR. This result is consistent with DC-SIGN's higher trans-infection efficiency of some HIV strains over DC-SIGNR. Finally, we show that the QDs potently inhibit DC-SIGN-mediated enhancement of EBOV-GP-driven transduction of target cells with IC50 values down to 0.7 nM, matching well to their DC-SIGN binding constant (apparent Kd = 0.6 nM) measured by FRET. These results suggest that the glycan-QDs are powerful multifunctional probes for dissecting multivalent protein-ligand recognition and predicting glyconanoparticle inhibition of virus infection at the cellular level.


Assuntos
Moléculas de Adesão Celular/metabolismo , Ebolavirus/metabolismo , Glicoproteínas/metabolismo , Doença pelo Vírus Ebola/metabolismo , Lectinas Tipo C/metabolismo , Polissacarídeos/metabolismo , Pontos Quânticos/metabolismo , Receptores de Superfície Celular/metabolismo , Proteínas Virais/metabolismo , Linhagem Celular , Dissacarídeos/química , Dissacarídeos/metabolismo , Transferência Ressonante de Energia de Fluorescência/métodos , Doença pelo Vírus Ebola/virologia , Humanos , Modelos Moleculares , Monossacarídeos/química , Polissacarídeos/química , Pontos Quânticos/química
8.
J Virol ; 90(8): 3819-3827, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26792743

RESUMO

UNLABELLED: The human cytomegalovirus (HCMV) gene UL111A encodes cytomegalovirus-encoded human interleukin-10 (cmvIL-10), a homolog of the potent immunomodulatory cytokine human interleukin 10 (hIL-10). This viral homolog exhibits a range of immunomodulatory functions, including suppression of proinflammatory cytokine production and dendritic cell (DC) maturation, as well as inhibition of major histocompatibility complex (MHC) class I and class II. Here, we present data showing that cmvIL-10 upregulates hIL-10, and we identify CD14(+)monocytes and monocyte-derived macrophages and DCs as major sources of hIL-10 secretion in response to cmvIL-10. Monocyte activation was not a prerequisite for cmvIL-10-mediated upregulation of hIL-10, which was dose dependent and controlled at the transcriptional level. Furthermore, cmvIL-10 upregulated expression of tumor progression locus 2 (TPL2), which is a regulator of the positive hIL-10 feedback loop, whereas expression of a negative regulator of the hIL-10 feedback loop, dual-specificity phosphatase 1 (DUSP1), remained unchanged. Engagement of the hIL-10 receptor (hIL-10R) by cmvIL-10 led to upregulation of heme oxygenase 1 (HO-1), an enzyme linked with suppression of inflammatory responses, and this upregulation was required for cmvIL-10-mediated upregulation of hIL-10. We also demonstrate an important role for both phosphatidylinositol 3-kinase (PI3K) and STAT3 in the upregulation of HO-1 and hIL-10 by cmvIL-10. In addition to upregulating hIL-10, cmvIL-10 could exert a direct immunomodulatory function, as demonstrated by its capacity to upregulate expression of cell surface CD163 when hIL-10 was neutralized. This study identifies a mechanistic basis for cmvIL-10 function, including the capacity of this viral cytokine to potentially amplify its immunosuppressive impact by upregulating hIL-10 expression. IMPORTANCE: Human cytomegalovirus (HCMV) is a large, double-stranded DNA virus that causes significant human disease, particularly in the congenital setting and in solid-organ and hematopoietic stem cell transplant patients. A prominent feature of HCMV is the wide range of viral gene products that it encodes which function to modulate host defenses. One of these is cmvIL-10, which is a homolog of the potent immunomodulatory cytokine human interleukin 10 (hIL-10). In this study, we report that, in addition to exerting a direct biological impact, cmvIL-10 upregulates the expression of hIL-10 by primary blood-derived monocytes and that it does so by modulating existing cellular pathways. This capacity of cmvIL-10 to upregulate hIL-10 represents a mechanism by which HCMV may amplify its immunomodulatory impact during infection.


Assuntos
Citomegalovirus/genética , Regulação Viral da Expressão Gênica , Interleucina-10/genética , Monócitos/virologia , Proteínas Virais/fisiologia , Células Cultivadas , Citomegalovirus/imunologia , Heme Oxigenase (Desciclizante)/metabolismo , Humanos , Interleucina-10/metabolismo , Receptores de Lipopolissacarídeos , Monócitos/imunologia , Monócitos/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , RNA Mensageiro/metabolismo , Fator de Transcrição STAT3/metabolismo , Regulação para Cima , Proteínas Virais/genética
9.
J Gen Virol ; 97(9): 2387-2398, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27411311

RESUMO

Human cytomegalovirus, a member of the herpesvirus family, can cause significant morbidity and mortality in immune compromised patients resulting from either primary lytic infection or reactivation from latency. Latent infection is associated with a restricted viral transcription programme compared to lytic infection which consists of defined protein coding RNAs but also includes a number of virally encoded microRNAs (miRNAs). One of these, miR-UL112-1, is known to target the major lytic IE72 transcript but, to date, a functional role for miR-UL112-1 during latent infection has not been shown. To address this, we have analysed latent infection in myeloid cells using a virus in which the target site for miR-UL112-1 in the 3' UTR of IE72 was removed such that any IE72 RNA present during latent infection would no longer be subject to regulation by miR-UL112-1 through the RNAi pathway. Our data show that removal of the miR-UL112-1 target site in IE72 results in increased levels of IE72 RNA in experimentally latent primary monocytes. Furthermore, this resulted in induction of immediate early (IE) gene expression that is detectable by IE-specific cytotoxic T-cells (CTLs); no such CTL recognition of monocytes latently infected with wild-type virus was observed. We also recapitulated these findings in the more tractable THP-1 cell line model of latency. These observations argue that an important role for miR-UL112-1 during latency is to ensure tight control of lytic viral immediate early (IE) gene expression thereby preventing recognition of latently infected cells by the host's potent pre-existing anti-viral CTL response.


Assuntos
Citomegalovirus/genética , Regulação Viral da Expressão Gênica , Expressão Gênica , Genes Precoces , Evasão da Resposta Imune , MicroRNAs/metabolismo , Latência Viral , Células Cultivadas , Citomegalovirus/imunologia , Citomegalovirus/fisiologia , Regulação para Baixo , Humanos , Proteínas Imediatamente Precoces/biossíntese , Proteínas Imediatamente Precoces/genética , Monócitos/virologia , Linfócitos T Citotóxicos/imunologia
10.
J Infect Dis ; 211(12): 1936-42, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-25552371

RESUMO

Human cytomegalovirus (HCMV) causes significant morbidity in the immunocompromised host. Following primary infection, the virus establishes latent infection in progenitor cells of the myeloid lineage. These cells exhibit limited viral gene transcription and no evidence of de novo virion production. It is well recognized that differentiation of latently infected myeloid progenitor cells to dendritic or macrophage-like cells permits viral reactivation in vitro. This has been used to support the concept that viral reactivation in HCMV carriers routinely occurs from such terminally differentiated myeloid cells in vivo. However, to date this has not been shown for in vivo-differentiated macrophages. This study is the first to demonstrate that alveolar macrophages from HCMV carriers express immediate early lytic genes and produce infectious virus. This supports the view, until now based on in vitro data, that terminally differentiated myeloid cells in vivo are sites of HCMV reactivation and potential centers of viral dissemination in latently infected individuals with no evidence of virus disease or dissemination.


Assuntos
Infecções por Citomegalovirus/imunologia , Infecções por Citomegalovirus/virologia , Citomegalovirus/fisiologia , Macrófagos Alveolares/virologia , Ativação Viral , Humanos
11.
J Gen Virol ; 96(8): 2355-2359, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25957098

RESUMO

Latent infection of primary CD34(+) progenitor cells by human cytomegalovirus (HCMV) results in their increased survival in the face of pro-apoptotic signals. For instance, we have shown previously that primary myeloid cells are refractory to FAS-mediated killing and that cellular IL-10 (cIL-10) is an important survival factor for this effect. However, how cIL-10 mediates this protection is unclear. Here, we have shown that cIL-10 signalling leading to upregulation of the cellular factor PEA-15 mediates latency-associated protection of CD34(+) progenitor cells from the extrinsic death pathway.


Assuntos
Infecções por Citomegalovirus/metabolismo , Citomegalovirus/fisiologia , Proteína Ligante Fas/metabolismo , Interleucina-10/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Células Mieloides/virologia , Fosfoproteínas/metabolismo , Células-Tronco/virologia , Latência Viral , Antígenos CD34/metabolismo , Apoptose , Proteínas Reguladoras de Apoptose , Linhagem Celular , Citomegalovirus/genética , Infecções por Citomegalovirus/genética , Infecções por Citomegalovirus/fisiopatologia , Humanos , Interleucina-10/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Células Mieloides/citologia , Células Mieloides/metabolismo , Fosfoproteínas/genética , Células-Tronco/citologia , Células-Tronco/metabolismo
12.
J Virol ; 88(24): 13947-55, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25253336

RESUMO

UNLABELLED: The UL111A gene of human cytomegalovirus encodes a viral homologue of the cellular immunomodulatory cytokine interleukin 10 (cIL-10), which, due to alternative splicing, results in expression of two isoforms designated LAcmvIL-10 (expressed during both lytic and latent infection) and cmvIL-10 (identified only during lytic infection). We have analyzed the functions of LAcmvIL-10 during latent infection of primary myeloid progenitor cells and found that LAcmvIL-10 is responsible, at least in part, for the known increase in secretion of cellular IL-10 and CCL8 in the secretomes of latently infected cells. This latency-associated increase in CCL8 expression results from a concomitant LAcmvIL-10-mediated suppression of the expression of the cellular microRNA (miRNA) hsa-miR-92a, which targets CCL8 directly. Taking the data together, we show that the previously observed downregulation of hsa-miR-92a and upregulation of CCL8 during HCMV latent infection of myeloid cells are intimately linked via the latency-associated expression of LAcmvIL-10. IMPORTANCE: HCMV latency causes significant morbidity and mortality in immunocompromised individuals, yet HCMV is carried silently (latently) in 50 to 90% of the population. Understanding how HCMV maintains infection for the lifetime of an infected individual is critical for the treatment of immunocompromised individuals suffering with disease as a result of HCMV. In this study, we analyze one of the proteins that are expressed during the "latent" phase of HCMV, LAcmvIL-10, and find that the expression of the gene modulates the microenvironment of the infected cell, leading to evasion of the immune system.


Assuntos
Quimiocina CCL8/metabolismo , Citomegalovirus/fisiologia , Interleucina-10/metabolismo , MicroRNAs/metabolismo , Proteínas Virais/metabolismo , Latência Viral , Células Cultivadas , Humanos , Células Progenitoras Mieloides/imunologia , Células Progenitoras Mieloides/virologia
13.
PLoS Pathog ; 9(10): e1003635, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24130479

RESUMO

Human cytomegalovirus (HCMV) is a widely prevalent human herpesvirus, which, after primary infection, persists in the host for life. In healthy individuals, the virus is well controlled by the HCMV-specific T cell response. A key feature of this persistence, in the face of a normally robust host immune response, is the establishment of viral latency. In contrast to lytic infection, which is characterised by extensive viral gene expression and virus production, long-term latency in cells of the myeloid lineage is characterised by highly restricted expression of viral genes, including UL138 and LUNA. Here we report that both UL138 and LUNA-specific T cells were detectable directly ex vivo in healthy HCMV seropositive subjects and that this response is principally CD4⁺ T cell mediated. These UL138-specific CD4⁺ T cells are able to mediate MHC class II restricted cytotoxicity and, importantly, show IFNγ effector function in the context of both lytic and latent infection. Furthermore, in contrast to CDCD4⁺ T cells specific to antigens expressed solely during lytic infection, both the UL138 and LUNA-specific CD4⁺ T cell responses included CD4⁺ T cells that secreted the immunosuppressive cytokine cIL-10. We also show that cIL-10 expressing CD4⁺ T-cells are directed against latently expressed US28 and UL111A. Taken together, our data show that latency-associated gene products of HCMV generate CD4⁺ T cell responses in vivo, which are able to elicit effector function in response to both lytic and latently infected cells. Importantly and in contrast to CD4⁺ T cell populations, which recognise antigens solely expressed during lytic infection, include a subset of cells that secrete the immunosuppressive cytokine cIL-10. This suggests that HCMV skews the T cell responses to latency-associated antigens to one that is overall suppressive in order to sustain latent carriage in vivo.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Infecções por Citomegalovirus/imunologia , Citomegalovirus/fisiologia , Interleucina-10/imunologia , Receptores de Quimiocinas/imunologia , Proteínas Virais/imunologia , Latência Viral/fisiologia , Linfócitos T CD4-Positivos/patologia , Infecções por Citomegalovirus/genética , Infecções por Citomegalovirus/patologia , Feminino , Humanos , Interferon gama/genética , Interferon gama/imunologia , Interleucina-10/genética , Masculino , Receptores de Quimiocinas/genética , Proteínas Virais/genética
14.
Med Microbiol Immunol ; 204(3): 421-9, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25772624

RESUMO

As with all human herpesviruses, human cytomegalovirus (HCMV) persists for the lifetime of the host by establishing a latent infection, which is broken by periodic reactivation events. One site of HCMV latency is in the progenitor cells of the myeloid lineage such as CD34+ cells and their CD14+ derivatives. The development of experimental techniques to isolate and culture these primary cells in vitro is enabling detailed analysis of the events that occur during virus latency and reactivation. Ex vivo differentiation of latently infected primary myeloid cells to dendritic cells and macrophages results in the reactivation of latent virus and provides model systems in which to analyse the viral and cellular functions involved in latent carriage and reactivation. Such analyses have shown that, in contrast to primary lytic infection or reactivation which is characterised by a regulated cascade of expression of all viral genes, latent infection is associated with a much more restricted viral transcription programme with expression of only a small number of viral genes. Additionally, concomitant changes in the expression of cellular miRNAs and cellular proteins occur, and this includes changes in the expression of a number of secreted cellular proteins and intracellular anti-apoptotic proteins, which all have profound effects on the latently infected cells. In this review, we concentrate on the effects of one of the latency-associated viral proteins, LAcmvIL-10, and describe how it causes a decrease in the cellular miRNA, hsa-miR-92a, and a concomitant upregulation of the GATA2 myeloid transcription factor, which, in turn, drives the expression of cellular IL-10. Taken together, we argue that HCMV latency, rather than a period of viral quiescence, is associated with the virally driven manipulation of host cell functions, perhaps every bit as complex as lytic infection. A full understanding of these changes in cellular and viral gene expression during latent infection could have far-reaching implications for therapeutic intervention.


Assuntos
Infecções por Citomegalovirus/imunologia , Infecções por Citomegalovirus/virologia , Citomegalovirus/fisiologia , Interações Hospedeiro-Patógeno , Latência Viral , Citocinas/metabolismo , Infecções por Citomegalovirus/genética , Infecções por Citomegalovirus/metabolismo , Regulação da Expressão Gênica , Humanos , Evasão da Resposta Imune , MicroRNAs/genética
15.
Proc Natl Acad Sci U S A ; 109(36): 14538-43, 2012 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-22826250

RESUMO

After primary infection, human cytomegalovirus (HCMV) persists as a life-long latent infection, with host immunosuppression often resulting in clinical reactivation. During lytic infection, major changes in the expression of secreted cellular proteins (the secretome) occur that have profound effects on host-cell interactions, particularly at the level of the host immune response. In contrast, little is known about changes in the secretome that accompany latent infection, yet this is likely to be of major importance for the life-long carriage of this persistent human pathogen in the face of constant immunosurveillance. We have analyzed the secretome of cells carrying latent HCMV and have identified changes in several secreted cellular proteins known to be involved in regulation of the immune response and chemoattraction. Here, we show that a latency-associated increase in CC chemokine ligand (CCL)8 results in the recruitment of cluster of differentiation (CD)4(+) T cells to supernatants from latently infected CD34(+) cells but that these latent supernatants, also rich in immunosuppressive factors, inhibit cytokine secretion and cytotoxicity of HCMV-specific T-helper (Th)1 CD4(+) T cells. These results identify a strategy by which sites of latent HCMV can firstly recruit CD4(+) T cells and then inhibit their antiviral effector functions, thereby aiding the maintenance of latent infection in the face of the host immune response.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Movimento Celular/imunologia , Infecções por Citomegalovirus/imunologia , Infecções por Citomegalovirus/transmissão , Citomegalovirus/fisiologia , Regulação da Expressão Gênica/imunologia , Latência Viral/fisiologia , Quimiocina CCL8/metabolismo , Citomegalovirus/imunologia , Humanos , Modelos Biológicos , Latência Viral/imunologia
16.
J Virol ; 87(8): 4261-71, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23365437

RESUMO

It is generally accepted that, following primary infection, human cytomegalovirus (HCMV) establishes lifelong latency in CD34(+) progenitor cells and other derivative cells of the myeloid lineage. In this study, we show that the viral UL144 gene is expressed during latent infection in two cell types of the myeloid lineage, CD34(+) and CD14(+) monocytes, and that the UL144 protein is functional in latently infected monocytes. However, this latency-associated expression of UL144 occurs only in certain isolates of HCMV and depends on the presence of functional GATA-2 transcription factor binding sites in the UL144 promoter, in contrast to the viral latency-associated gene LUNA, which we also show is regulated by GATA-2 but expressed uniformly during latent infection independent of the virus isolate. Taken together, these data suggest that the HCMV latency-associated transcriptome may be virus isolate specific and dependent on the repertoire of transcription factor binding sites in the promoters of latency-associated genes.


Assuntos
Citomegalovirus/fisiologia , Interações Hospedeiro-Patógeno , Glicoproteínas de Membrana/metabolismo , Proteínas Virais/metabolismo , Latência Viral , Antígenos CD34/análise , Fator de Transcrição GATA2 , Humanos , Receptores de Lipopolissacarídeos/análise , Monócitos/química , Monócitos/virologia
17.
Viruses ; 16(1)2024 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-38275971

RESUMO

Severe cases of SARS-CoV-2 infection are characterized by an immune response that leads to the overproduction of pro-inflammatory cytokines, resulting in lung damage, cardiovascular symptoms, hematologic symptoms, acute kidney injury and multiple organ failure that can lead to death. This remarkable increase in cytokines and other inflammatory molecules is primarily caused by viral proteins, and particular interest has been given to ORF8, a unique accessory protein specific to SARS-CoV-2. Despite plenty of research, the precise mechanisms by which ORF8 induces proinflammatory cytokines are not clear. Our investigations demonstrated that ORF8 augments production of IL-6 induced by Poly(I:C) in human embryonic kidney (HEK)-293 and monocyte-derived dendritic cells (mono-DCs). We discuss our findings and the multifaceted roles of ORF8 as a modulator of cytokine response, focusing on type I interferon and IL-6, a key component of the immune response to SARS-CoV-2. In addition, we explore the hypothesis that ORF8 may act through pattern recognition receptors of dsRNA such as TLRs.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Citocinas , Células HEK293 , Interleucina-6
18.
Am J Hypertens ; 36(9): 471-480, 2023 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-37148218

RESUMO

Cytomegalovirus (CMV) is a member of the ß-herpesviruses and is ubiquitous, infecting 50%-99% of the human population depending on ethnic and socioeconomic conditions. CMV establishes lifelong, latent infections in their host. Spontaneous reactivation of CMV is usually asymptomatic, but reactivation events in immunocompromised or immunosuppressed individuals can lead to severe morbidity and mortality. Moreover, herpesvirus infections have been associated with several cardiovascular and post-transplant diseases (stroke, atherosclerosis, post-transplant vasculopathy, and hypertension). Herpesviruses, including CMV, encode viral G-protein-coupled receptors (vGPCRs) that alter the host cell by hijacking signaling pathways that play important roles in the viral life cycle and these cardiovascular diseases. In this brief review, we discuss the pharmacology and signaling properties of these vGPCRs, and their contribution to hypertension. Overall, these vGPCRs can be considered attractive targets moving forward in the development of novel hypertensive therapies.


Assuntos
Doenças Cardiovasculares , Infecções por Citomegalovirus , Hipertensão , Humanos , Citomegalovirus/metabolismo , Transdução de Sinais , Infecções por Citomegalovirus/epidemiologia , Receptores Acoplados a Proteínas G/metabolismo
19.
Viruses ; 15(9)2023 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-37766281

RESUMO

Human cytomegalovirus (HCMV) infection can lead to either lytic or latent infection, which is dependent on the regulation of the viral major immediate early promoter (MIEP). Suppression of the MIEP is a pre-requisite for latency and is driven by repressive epigenetic modifications at the MIEP during latent infection. However, other viral genes are expressed during latency and this is correlated with activatory epigenetic modifications at latent gene promoters. Yet the molecular basis of the differential regulation of latent and lytic gene expression by epigenetics is unclear. LUNA, a latent viral transcript, has been suggested to be important for HCMV latency and has also been shown to be important for efficient reactivation likely through its known deSUMOylase activity. Intriguingly, we and others have also observed that LUNA enhances latency-associated expression of the viral UL138 gene. Here, we show that in the absence of LUNA, the expression of multiple latency-associated transcripts is reduced during latent infection, which is correlated with a lack of activatory marks at their promoters. Interestingly, we also show that LUNA interacts with the hematopoietic transcription factor GATA-2, which has previously been shown to bind to a number of latency-associated gene promoters, and that this interaction is dependent on the deSUMOylase domain of LUNA. Finally, we show that the deSUMOylase activity of LUNA is required for the establishment and/or maintenance of an open chromatin configuration around latency-associated gene promoters. As such, LUNA plays a key role in efficient latency-associated viral gene expression and carriage of viral genome during latent carriage.


Assuntos
Citomegalovirus , Infecção Latente , Humanos , Citomegalovirus/genética , Cromatina/genética , Epigênese Genética , Expressão Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA