Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Cell ; 180(5): 956-967.e17, 2020 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-32084332

RESUMO

Mechanotransduction, the conversion of mechanical stimuli into electrical signals, is a fundamental process underlying essential physiological functions such as touch and pain sensing, hearing, and proprioception. Although the mechanisms for some of these functions have been identified, the molecules essential to the sense of pain have remained elusive. Here we report identification of TACAN (Tmem120A), an ion channel involved in sensing mechanical pain. TACAN is expressed in a subset of nociceptors, and its heterologous expression increases mechanically evoked currents in cell lines. Purification and reconstitution of TACAN in synthetic lipids generates a functional ion channel. Finally, a nociceptor-specific inducible knockout of TACAN decreases the mechanosensitivity of nociceptors and reduces behavioral responses to painful mechanical stimuli but not to thermal or touch stimuli. We propose that TACAN is an ion channel that contributes to sensing mechanical pain.


Assuntos
Canais Iônicos/fisiologia , Mecanotransdução Celular/genética , Nociceptores/metabolismo , Dor/genética , Tato/genética , Animais , Regulação da Expressão Gênica/genética , Humanos , Canais Iônicos/genética , Lipídeos/genética , Camundongos , Camundongos Knockout , Dor/fisiopatologia , Técnicas de Patch-Clamp , Estresse Mecânico , Tato/fisiologia
2.
Trends Biochem Sci ; 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38851904

RESUMO

Transient receptor potential (TRP) channels are implicated in a wide array of mechanotransduction processes. However, a question remains whether TRP channels directly sense mechanical force, thus acting as primary mechanotransducers. We use several recent examples to demonstrate the difficulty in definitively ascribing mechanosensitivity to TRP channel subfamilies. Ultimately, despite being implicated in an ever-growing list of mechanosignalling events in most cases limited robust or reproducible evidence supports the contention that TRP channels act as primary transducers of mechanical forces. They either (i) possess unique and as yet unspecified structural or local requirements for mechanosensitivity; or (ii) act as mechanoamplifiers responding downstream of the activation of a primary mechanotransducer that could include Ca2+-permeable mechanosensitive (MS) channels or other potentially unidentified mechanosensors.

3.
Annu Rev Physiol ; 84: 307-329, 2022 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-34637325

RESUMO

Many aspects of mammalian physiology are mechanically regulated. One set of molecules that can mediate mechanotransduction are the mechanically activated ion channels. These ionotropic force sensors are directly activated by mechanical inputs, resulting in ionic flux across the plasma membrane. While there has been much research focus on the role of mechanically activated ion channels in touch sensation and hearing, recent data have highlighted the broad expression pattern of these molecules in mammalian cells. Disruption of mechanically activated channels has been shown to impact (a) the development of mechanoresponsive structures, (b) acute mechanical sensing, and (c) mechanically driven homeostatic maintenance in multiple tissue types. The diversity of processes impacted by these molecules highlights the importance of mechanically activated ion channels in mammalian physiology.


Assuntos
Canais Iônicos , Mecanotransdução Celular , Animais , Humanos , Canais Iônicos/metabolismo , Mamíferos , Mecanotransdução Celular/fisiologia , Tato/fisiologia
4.
Cytometry A ; 97(5): 504-514, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31603601

RESUMO

The polymodal channel TRPV4 has been shown to regulate development and maintenance of cartilage. Here we investigate whether TRPV4 activity regulates the early deposition and structure of collagen matrix in the femoral head cartilage by comparing the 3D morphology and the sub-micrometer organization of the collagen matrix between wild type and Trpv4 -/- mice pups four to five days old. Two-photon microscopy can be used to conduct label-free imaging of cartilage, as collagen generates a second harmonic signal (second harmonic generation [SHG]) under pulsed infrared excitation. In one set of measurements, we use circularly polarized laser light to reconstruct the 3D morphology of the femoral head cartilage and to measure the tissue thickness. Second, by rotating the direction of the linearly polarized light and using polarized SHG detection, we investigate the sub-micrometer orientation of collagen fibers in the cartilage. At this developmental stage, we cannot detect statistically significant differences between the two mice strains, although a tendency toward a more random orientation of collagen fibers and a higher thickness of the whole cartilage seems to characterize the Trpv4 -/- mice. We discuss possible reasons for these observations. © 2019 The Authors. Cytometry Part A published by Wiley Periodicals, Inc. on behalf of International Society for Advancement of Cytometry.


Assuntos
Microscopia , Microscopia de Geração do Segundo Harmônico , Animais , Cartilagem/metabolismo , Colágeno/metabolismo , Camundongos , Canais de Cátion TRPV/genética
5.
Clin Exp Pharmacol Physiol ; 45(5): 481-488, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29359488

RESUMO

Cartilage tissue lines the joints of mammals, helping to lubricate joint movement and distribute mechanical loads. This tissue is comprised of isolated cells known as chondrocytes which are embedded in an extracellular matrix. Chondrocytes produce and maintain the cartilage by sensing and responding to changing mechanical loads. Mechanosensitive ion channels have been implicated in chondrocyte mechanotransduction and recent studies have shown that both PIEZO1 and TRPV4 can be activated by mechanical stimuli in these cells. The 2 channels mediate separate but overlapping mechanoelectrical transduction pathways, PIEZO1 in response to stretch and substrate deflections and TRPV4 in response to substrate deflections alone. These distinct pathways of mechanoelectrical transduction suggest a mechanism by which chondrocytes can distinguish between different stimuli that arise in their complex mechanical environment.


Assuntos
Condrócitos/citologia , Fenômenos Eletrofisiológicos , Mecanotransdução Celular , Animais , Condrócitos/metabolismo , Humanos , Integrinas/metabolismo , Canais de Cátion TRPV/metabolismo
6.
EMBO J ; 31(17): 3635-46, 2012 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-22850675

RESUMO

Stomatin proteins oligomerize at membranes and have been implicated in ion channel regulation and membrane trafficking. To obtain mechanistic insights into their function, we determined three crystal structures of the conserved stomatin domain of mouse stomatin that assembles into a banana-shaped dimer. We show that dimerization is crucial for the repression of acid-sensing ion channel 3 (ASIC3) activity. A hydrophobic pocket at the inside of the concave surface is open in the presence of an internal peptide ligand and closes in the absence of this ligand, and we demonstrate a function of this pocket in the inhibition of ASIC3 activity. In one crystal form, stomatin assembles via two conserved surfaces into a cylindrical oligomer, and these oligomerization surfaces are also essential for the inhibition of ASIC3-mediated currents. The assembly mode of stomatin uncovered in this study might serve as a model to understand oligomerization processes of related membrane-remodelling proteins, such as flotillin and prohibitin.


Assuntos
Canais Iônicos Sensíveis a Ácido/metabolismo , Proteínas Sanguíneas/metabolismo , Proteínas de Membrana/metabolismo , Canais Iônicos Sensíveis a Ácido/química , Animais , Proteínas Sanguíneas/química , Proteínas Sanguíneas/genética , Células CHO , Células Cultivadas , Cricetinae , Cricetulus , Dimerização , Fibroblastos , Células HEK293 , Humanos , Proteínas de Membrana/química , Proteínas de Membrana/genética , Camundongos , Camundongos Transgênicos , Estrutura Terciária de Proteína , Ratos
7.
Pflugers Arch ; 467(1): 121-32, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24981693

RESUMO

Sensory cells specialized to detect extremely small mechanical changes are common to the auditory and somatosensory systems. It is widely accepted that mechanosensitive channels form the core of the mechanoelectrical transduction in hair cells as well as the somatic sensory neurons that underlie the sense of touch and mechanical pain. Here, we will review how the activation of such channels can be measured in a meaningful physiological context. In particular, we will discuss the idea that mechanosensitive channels normally occur in transmembrane complexes that are anchored to extracellular matrix components (ECM) both in vitro and in vivo. One component of such complexes in sensory neurons is the integral membrane scaffold protein STOML3 which is a robust physiological regulator of native mechanosensitive currents. In order to better characterize such channels in transmembrane complexes, we developed a new electrophysiological method that enables the quantification of mechanosensitive current amplitude and kinetics when activated by a defined matrix movement in cultured cells. The results of such studies strongly support the idea that ion channels in transmembrane complexes are highly tuned to detect movement of the cell membrane in relation to the ECM.


Assuntos
Membrana Celular/fisiologia , Matriz Extracelular/fisiologia , Canais Iônicos/fisiologia , Mecanorreceptores/fisiologia , Mecanotransdução Celular/fisiologia , Sensação/fisiologia , Animais , Proteínas da Matriz Extracelular/metabolismo , Humanos , Ativação do Canal Iônico/fisiologia , Fluidez de Membrana/fisiologia , Modelos Biológicos , Estresse Mecânico
8.
Science ; 383(6686): 992-998, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38422143

RESUMO

Touch perception is enabled by mechanically activated ion channels, the opening of which excites cutaneous sensory endings to initiate sensation. In this study, we identify ELKIN1 as an ion channel likely gated by mechanical force, necessary for normal touch sensitivity in mice. Touch insensitivity in Elkin1-/- mice was caused by a loss of mechanically activated currents (MA currents) in around half of all sensory neurons activated by light touch (low-threshold mechanoreceptors). Reintroduction of Elkin1 into sensory neurons from Elkin1-/- mice restored MA currents. Additionally, small interfering RNA-mediated knockdown of ELKIN1 from induced human sensory neurons substantially reduced indentation-induced MA currents, supporting a conserved role for ELKIN1 in human touch. Our data identify ELKIN1 as a core component of touch transduction in mice and potentially in humans.


Assuntos
Canais Iônicos , Mecanorreceptores , Mecanotransdução Celular , Proteínas de Membrana , Células Receptoras Sensoriais , Percepção do Tato , Animais , Humanos , Camundongos , Células HEK293 , Canais Iônicos/genética , Canais Iônicos/fisiologia , Mecanorreceptores/fisiologia , Mecanotransdução Celular/genética , Mecanotransdução Celular/fisiologia , Proteínas de Membrana/genética , Proteínas de Membrana/fisiologia , RNA Interferente Pequeno , Tato , Camundongos Mutantes , Masculino , Feminino
9.
Methods Mol Biol ; 2600: 155-167, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36587096

RESUMO

The precise study of mechanically activated ion channels requires a combination of electrophysiology to directly measure channel-mediated ionic flux and a means to apply meaningful mechanical stimuli to activate the channel. In metazoans, individual cells in vivo experience mechanical inputs at the cell-substrate interface where cells form connections to the local microenvironment. To study such processes in vitro, a technique is required where mechanical stimuli can be applied to cells via connections with an underlying substrate. Here, we outline the methodology for combining whole-cell patch-clamp electrophysiology (to monitor transmembrane currents) with elastomer pillar arrays that can be deflected (to apply stimuli to cells). This quantitative technique can be used to assess changes in sensitivity and kinetics of mechanically evoked currents when cell intrinsic or cell extrinsic factors are manipulated.


Assuntos
Canais Iônicos , Mecanotransdução Celular , Mecanotransdução Celular/fisiologia , Canais Iônicos/metabolismo , Cinética
10.
Life (Basel) ; 13(3)2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36983812

RESUMO

With the advancement in reusable rocket propulsion technology, space tourist trips into outer space are now becoming a possibility at a cost-effective rate. As such, astronauts will face a host of health-related challenges, particularly on long-duration space missions where maintaining a balanced healthy microbiome is going to be vital for human survival in space exploration as well as mission success. The human microbiome involves a whole list of micro-organisms that reside in and on the human host, and plays an integral role in keeping the human host healthy. However, imbalances in the microbiome have been directly linked to many human diseases. Research findings have clearly shown that the outer space environment can directly affect the normal microbiome of astronauts when the astronaut is exposed to the microgravity environment. In this study, we show that the simulation of microgravity on earth can mimic the outer space microgravity environment. Staphylococus aureus (S. aureus) was chosen for this study as it is an opportunistic pathogen, which is part of the normal human skin microflora and the nasal passages. This study's results show that S. aureus proliferation was significantly increased under a microgravity environment compared to Earth's gravity conditions, which complements previous work performed on bacteria in the outer space environment in the International Space Station (ISS). This demonstrates that this technology can be utilised here on Earth to mimic the outer space environment and to study challenging health-related questions. This in return saves us the cost on conducting experiments in the ISS and can help advance knowledge at a faster rate and produce countermeasures to mitigate the negative side effects of the hostile outer space environment on humans.

11.
Nat Commun ; 14(1): 1226, 2023 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-36869049

RESUMO

Netrin-1 is a bifunctional chemotropic guidance cue that plays key roles in diverse cellular processes including axon pathfinding, cell migration, adhesion, differentiation, and survival. Here, we present a molecular understanding of netrin-1 mediated interactions with glycosaminoglycan chains of diverse heparan sulfate proteoglycans (HSPGs) and short heparin oligosaccharides. Whereas interactions with HSPGs act as platform to co-localise netrin-1 close to the cell surface, heparin oligosaccharides have a significant impact on the highly dynamic behaviour of netrin-1. Remarkably, the monomer-dimer equilibrium of netrin-1 in solution is abolished in the presence of heparin oligosaccharides and replaced with highly hierarchical and distinct super assemblies leading to unique, yet unknown netrin-1 filament formation. In our integrated approach we provide a molecular mechanism for the filament assembly which opens fresh paths towards a molecular understanding of netrin-1 functions.


Assuntos
Glicosaminoglicanos , Heparina , Netrina-1 , Orientação de Axônios , Diferenciação Celular , Proteoglicanas de Heparan Sulfato
12.
FEBS J ; 289(15): 4447-4469, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-34060230

RESUMO

The ability of cells to convert mechanical perturbations into biochemical information is an essential aspect of mammalian physiology. The molecules that mediate such mechanotransduction include mechanically activated ion channels, which directly convert mechanical inputs into electrochemical signals. The unifying feature of these channels is that their open probability increases with the application of a mechanical input. However, the structure, activation profile and sensitivity of distinct mechanically activated ion channels vary from channel to channel. In this review, we discuss how ionic currents can be mechanically evoked and monitored in vitro, and describe the distinct activation profiles displayed by a range of mammalian channels. In addition, we discuss the various mechanisms by which the best-characterized mammalian, mechanically activated ion channel, PIEZO1, can be modulated. The diversity of activation and modulation of these mammalian ion channels suggest that these molecules may facilitate a finely controlled and diverse ability to sense mechanical inputs in mammalian cells.


Assuntos
Canais Iônicos , Mecanotransdução Celular , Animais , Canais Iônicos/metabolismo , Transporte de Íons , Mamíferos/metabolismo , Mecanotransdução Celular/fisiologia
13.
NPJ Microgravity ; 8(1): 19, 2022 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-35662260

RESUMO

The advancement of microgravity simulators is helping many researchers better understanding the impact of the mechanically unloaded space environment on cellular function and disfunction. However, performing microgravity experiments on Earth, using simulators such as the Random Positioning Machine, introduces some unique practical challenges, including air bubble formation and leakage of growth medium from tissue culture flask and plates, all of which limit research progress. Here, we developed an easy-to-use hybrid biological platform designed with the precision of 3D printing technologies combined with PDMS microfluidic fabrication processes to facilitate reliable and reproducible microgravity cellular experiments. The system has been characterized for applications in the contest of brain cancer research by exposing glioblastoma and endothelial cells to 24 h of simulated microgravity condition to investigate the triggered mechanosensing pathways involved in cellular adaptation to the new environment. The platform demonstrated compatibility with different biological assays, i.e., proliferation, viability, morphology, protein expression and imaging of molecular structures, showing advantages over the conventional usage of culture flask. Our results indicated that both cell types are susceptible when the gravitational vector is disrupted, confirming the impact that microgravity has on both cancer and healthy cells functionality. In particular, we observed deactivation of Yap-1 molecule in glioblastoma cells and the remodeling of VE-Cadherin junctional protein in endothelial cells. The study provides support for the application of the proposed biological platform for advancing space mechanobiology research, also highlighting perspectives and strategies for developing next generation of brain cancer molecular therapies, including targeted drug delivery strategies.

14.
Dev Cell ; 57(18): 2237-2247.e8, 2022 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-36113483

RESUMO

Cytotoxic T lymphocytes (CTLs) lyse target cells by delivering lytic granules that contain the pore former perforin to the cytotoxic immunological synapse. Here, we establish that opposing cytoskeletal forces drive lytic granule polarization and simultaneously shape T cell synapse topography to enhance target perforation. At the cell rear, actomyosin contractility drives the anterograde movement of lytic granules toward the nucleus. At the synapse, dynein-derived forces induce negatively curved membrane pockets to which granules are transported around the nucleus. These highly concave degranulation pockets are located directly opposite positively curved bulges on the target cell membrane. We identify a curvature bias in the action of perforin, which preferentially perforates positively curved tumor cell membrane. Together, these findings demonstrate murine and human T cell-mediated cytotoxicity to be a highly tuned mechano-biochemical system, in which the forces that polarize lytic granules locally bend the synaptic membrane to favor the unidirectional perforation of the target cell.


Assuntos
Actomiosina , Citotoxicidade Imunológica , Sinapses Imunológicas , Perforina , Actomiosina/metabolismo , Animais , Grânulos Citoplasmáticos/metabolismo , Dineínas/metabolismo , Humanos , Glicoproteínas de Membrana/metabolismo , Camundongos , Perforina/metabolismo , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Linfócitos T Citotóxicos/metabolismo
15.
Front Cell Dev Biol ; 9: 750775, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34778261

RESUMO

In recent years, there has been an increasing interest in space exploration, supported by the accelerated technological advancements in the field. This has led to a new potential environment that humans could be exposed to in the very near future, and therefore an increasing request to evaluate the impact this may have on our body, including health risks associated with this endeavor. A critical component in regulating the human pathophysiology is represented by the cardiovascular system, which may be heavily affected in these extreme environments of microgravity and radiation. This mini review aims to identify the impact of microgravity and radiation on the cardiovascular system. Being able to understand the effect that comes with deep space explorations, including that of microgravity and space radiation, may also allow us to get a deeper understanding of the heart and ultimately our own basic physiological processes. This information may unlock new factors to consider with space exploration whilst simultaneously increasing our knowledge of the cardiovascular system and potentially associated diseases.

16.
Biomater Sci ; 9(12): 4496-4509, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-34008601

RESUMO

The tissue microenvironment contains a complex assortment of multiple cell types, matrices, and vessel structures, which is difficult to reconstruct in vitro. Here, we demonstrate model tumor microenvironments formed through direct writing of vasculature channels and tumor cell aggregates, within a cell-laden microgel matrix. Photocrosslinkable microgels provide control over local and global mechanics, while enabling the integration of virtually any cell type. Direct writing of a Pluronic sacrificial ink into a stromal cell-microgel suspension is used to form vessel structures for endothelialization, followed by printing of melanoma aggregates. Tumor cells migrate into the prototype vessels as a function of spatial location, thereby providing a measure of invasive potential. The integration of perfusable channels with multiple spatially defined cell types provides new avenues for modelling development and disease, with scope for both fundamental research and drug development efforts.


Assuntos
Microgéis , Hidrogéis , Impressão Tridimensional , Microambiente Tumoral
17.
Front Bioeng Biotechnol ; 8: 608951, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33537292

RESUMO

Ion channels activated by mechanical inputs are important force sensing molecules in a wide array of mammalian cells and tissues. The transient receptor potential channel, TRPV4, is a polymodal, nonselective cation channel that can be activated by mechanical inputs but only if stimuli are applied directly at the interface between cells and their substrate, making this molecule a context-dependent force sensor. However, it remains unclear how TRPV4 is activated by mechanical inputs at the cell-substrate interface, which cell intrinsic and cell extrinsic parameters might modulate the mechanical activation of the channel and how mechanical activation differs from TRPV4 gating in response to other stimuli. Here we investigated the impact of substrate mechanics and cytoskeletal components on mechanically evoked TRPV4 currents and addressed how point mutations associated with TRPV4 phosphorylation and arthropathy influence mechanical activation of the channel. Our findings reveal distinct regulatory modulation of TRPV4 from the mechanically activated ion channel PIEZO1, suggesting the mechanosensitivity of these two channels is tuned in response to different parameters. Moreover, our data demonstrate that the effect of point mutations in TRPV4 on channel activation are profoundly dependent on the gating stimulus.

18.
Front Cell Dev Biol ; 8: 96, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32154251

RESUMO

A lack of gravity experienced during space flight has been shown to have profound effects on human physiology including muscle atrophy, reductions in bone density and immune function, and endocrine disorders. At present, these physiological changes present major obstacles to long-term space missions. What is not clear is which pathophysiological disruptions reflect changes at the cellular level versus changes that occur due to the impact of weightlessness on the entire body. This review focuses on current research investigating the impact of microgravity at the cellular level including cellular morphology, proliferation, and adhesion. As direct research in space is currently cost prohibitive, we describe here the use of microgravity simulators for studies at the cellular level. Such instruments provide valuable tools for cost-effective research to better discern the impact of weightlessness on cellular function. Despite recent advances in understanding the relationship between extracellular forces and cell behavior, very little is understood about cellular biology and mechanotransduction under microgravity conditions. This review will examine recent insights into the impact of simulated microgravity on cell biology and how this technology may provide new insight into advancing our understanding of mechanically driven biology and disease.

19.
Elife ; 92020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32228863

RESUMO

Mechanoelectrical transduction is a cellular signalling pathway where physical stimuli are converted into electro-chemical signals by mechanically activated ion channels. We describe here the presence of mechanically activated currents in melanoma cells that are dependent on TMEM87a, which we have renamed Elkin1. Heterologous expression of this protein in PIEZO1-deficient cells, that exhibit no baseline mechanosensitivity, is sufficient to reconstitute mechanically activated currents. Melanoma cells lacking functional Elkin1 exhibit defective mechanoelectrical transduction, decreased motility and increased dissociation from organotypic spheroids. By analysing cell adhesion properties, we demonstrate that Elkin1 deletion is associated with increased cell-substrate adhesion and decreased homotypic cell-cell adhesion strength. We therefore conclude that Elkin1 supports a PIEZO1-independent mechanoelectrical transduction pathway and modulates cellular adhesions and regulates melanoma cell migration and cell-cell interactions.


When cells receive signals about their surrounding environment, this initiates a chain of signals which generate a response. Some of these signalling pathways allow cells to sense physical and mechanical forces via a process called mechanotransduction. There are different types of mechanotransduction. In one pathway, mechanical forces open up specialized channels on the cell surface which allow charged particles to move across the membrane and create an electrical current. Mechanoelectrical transduction plays an important role in the spread of cancer: as cancer cells move away from a tumour they use these signalling pathways to find their way between cells and move into other parts of the body. Understanding these pathways could reveal ways to stop cancer from spreading, making it easier to treat. However, it remains unclear which molecules regulate mechanoelectrical transduction in cancer cells. Now, Patkunarajah, Stear et al. have studied whether mechanoelectrical transduction is involved in the migration of skin cancer cells. To study mechanoelectrical transduction, a fine mechanical input was applied to the skin cancer cells whilst measuring the flow of charged molecules moving across the membrane. This experiment revealed that a previously unknown protein named Elkin1 is required to convert mechanical forces into electrical currents. Deleting this newly found protein caused skin cancer cells to move more slowly and dissociate more easily from tumour-like clusters of cells. These findings suggest that Elkin1 is part of a newly identified mechanotransduction pathway that allows cells to sense mechanical forces from their surrounding environment. More work is needed to determine what role Elkin1 plays in mechanoelectrical transduction and whether other proteins are also involved. This could lead to new approaches that prevent cancer cells from dissociating from tumours and spreading to other body parts.


Assuntos
Mecanotransdução Celular/fisiologia , Melanoma/patologia , Proteínas de Membrana/fisiologia , Adesão Celular , Comunicação Celular , Linhagem Celular Tumoral , Movimento Celular , Humanos , Canais Iônicos/fisiologia , Esferoides Celulares
20.
J Gen Appl Microbiol ; 55(6): 427-39, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20118607

RESUMO

The imino amino acid, proline, has roles in both cellular nutrition and response to stress. Proline uptake in Saccharomyces cerevisiae is largely mediated by a high affinity, specific permease, Put4p, and a low affinity general amino acid permease, Gap1p. Both are subject to nitrogen catabolite repression (NCR) and nitrogen catabolite inactivation (NCI). In order for proline to be fully exploited, its transport must be derepressed, as occurs upon depletion of preferred nitrogen sources, and molecular oxygen must be present to allow the first step of catabolism via proline oxidase. This study focuses on the isolation of variants of Put4p, which are insensitive to repression by a preferred nitrogen source (ammonia) and their subsequent effect on proline transport and stress tolerance. Specific amino acid residues in the carboxy-terminal region of Put4p were targeted by site-directed mutagenesis. Substitution at Serine(605), a potential phosphorylation target, led to the amelioration of ammonia-induced down-regulation of Put4p. When combined with a promoter mutation (-160), the S(605)A mutation resulted in increased proline uptake and accumulation. This increase in proline accumulation was associated with increased cell viability in conditions of high temperature and osmotic stress raising possible benefits in industrial fermentation applications.


Assuntos
Sistemas de Transporte de Aminoácidos Neutros/genética , Amônia/farmacologia , Resposta ao Choque Térmico , Pressão Osmótica , Saccharomyces cerevisiae , Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Amônia/metabolismo , Regulação Fúngica da Expressão Gênica , Microbiologia Industrial/métodos , Mutagênese Sítio-Dirigida , Mutação , Nitrogênio , Prolina/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA