Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
ALTEX ; 40(4): 649-664, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37422924

RESUMO

Lung cancer is a leading cause of death worldwide, with only a fraction of patients responding to immunotherapy. The correlation between increased T-cell infiltration and positive patient outcomes has motivated the search for therapeutics promoting T-cell infiltration. While transwell and spheroid platforms have been employed, these models lack flow and endothelial barriers, and cannot faithfully model T-cell adhesion, extravasation, and migration through 3D tissue. Presented here is a 3D chemotaxis assay, in a lung tumor-on-chip model with 3D endothelium (LToC-Endo), to address this need. The described assay consists of a HUVEC-derived vascular tubule cultured under rocking flow, through which T-cells are added; a collagenous stromal barrier, through which T-cells migrate; and a chemoattractant/tumor (HCC0827 or NCI-H520) compartment. Here, activated T-cells extravasate and migrate in response to gradients of rhCXCL11 and rhCXCL12. Adopting a T-cell activation protocol with a rest period enables proliferative burst prior to introducing T-cells into chips and enhances assay sensitivity. In addition, incorporating this rest recovers endothelial activation in response to rhCXCL12. As a final control, we show that blocking ICAM-1 interferes with T-cell adhesion and chemotaxis. This microphysiological system, which mimics in vivo stromal and vascular barriers, can be used to evaluate potentiation of immune chemotaxis into tumors while probing for vascular responses to potential therapeutics. Finally, we propose translational strategies by which this assay could be linked to preclinical and clinical models to support human dose prediction, personalized medicine, and the reduction, refinement, and replacement of animal models.


Assuntos
Neoplasias Pulmonares , Sistemas Microfisiológicos , Animais , Humanos , Células Cultivadas , Endotélio Vascular , Neoplasias Pulmonares/tratamento farmacológico , Movimento Celular
2.
SLAS Discov ; 24(2): 175-189, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30383469

RESUMO

Nrf2, a master regulator of the phase II gene response to stress, is kept at low concentrations in the cell through binding to Keap1, an adaptor protein for the Cul3 ubiquitin ligase complex. To identify Nrf2 activators, two separate time-resolved fluorescence resonance energy transfer (TR-FRET) assays were developed to monitor the binding of Nrf2-Keap1 and Cul3-Keap1, respectively. The triterpenoid, 1-[2-cyano-3-,12-dioxooleana-1,9(11)-dien-28-oyl] imidazole (CDDO-Im) and its analogs, exhibited approximately 100-fold better potency in the Cul3-Keap1 assay than in the Nrf2-Keap1 assay, and this difference was more profound at 37 °C than at room temperature in the Nrf2-Keap1 assay, but this phenomenon was not observed in the Cul3-Keap1 assay. A full diversity screen of approximately 2,200,000 GSK compounds was run with the Cul3-Keap1 TR-FRET assay and multiple chemical series were identified and characterized.


Assuntos
Proteínas Culina/metabolismo , Transferência Ressonante de Energia de Fluorescência/métodos , Ensaios de Triagem em Larga Escala/métodos , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Células HEK293 , Humanos , Concentração Inibidora 50 , Cinética , Ligação Proteica , Temperatura , Fatores de Tempo
3.
Artigo em Inglês | MEDLINE | ID: mdl-15282088

RESUMO

Primary fatty acid amides (R-CO-NH2) and N-acylglycines (R-CO-NH-CH2-COOH) are classes of compounds that have only recently been isolated and characterized from biological sources. Key questions remain regarding how these lipid amides are produced and degraded in biological systems. Relative to the fatty acids, little has been done to develop methods to separate and quantify the fatty acid amides and N-acylglycines. We describe reversed phase HPLC methods for the separation of C2-C12 primary fatty acid amides and N-acylglycines and also C12-C22 fatty acid amides. Separation within each class occurs primarily on the basis of simple interactions between the acyl chain and the chromatographic stationary phase, but the polar headgroups on these and related fatty acids and N-acylethanolamides modulate the absolute retention in reversed phase mode. We use these methods to measure the enzyme-mediated, two-step conversion of N-octanoylglycine to octanoamide.


Assuntos
Amidas/química , Cromatografia Líquida de Alta Pressão/métodos , Ácidos Graxos/química , Glicina/análise , Oxigenases de Função Mista/química , Complexos Multienzimáticos/química
4.
PLoS One ; 9(5): e96737, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24806487

RESUMO

NOD1 is an intracellular pattern recognition receptor that recognizes diaminopimelic acid (DAP), a peptidoglycan component in gram negative bacteria. Upon ligand binding, NOD1 assembles with receptor-interacting protein (RIP)-2 kinase and initiates a signaling cascade leading to the production of pro-inflammatory cytokines. Increased NOD1 signaling has been associated with a variety of inflammatory disorders suggesting that small-molecule inhibitors of this signaling complex may have therapeutic utility. We utilized a cell-based screening approach with extensive selectivity profiling to search for small molecule inhibitors of the NOD1 signaling pathway. Via this process we identified three distinct chemical series, xanthines (SB711), quinazolininones (GSK223) and aminobenzothiazoles (GSK966) that selectively inhibited iE-DAP-stimulated IL-8 release via the NOD1 signaling pathway. All three of the newly identified compound series failed to block IL-8 secretion in cells following stimulation with ligands for TNF receptor, TLR2 or NOD2 and, in addition, none of the compound series directly inhibited RIP2 kinase activity. Our initial exploration of the structure-activity relationship and physicochemical properties of the three series directed our focus to the quinazolininone biarylsulfonamides (GSK223). Further investigation allowed for the identification of significantly more potent analogs with the largest boost in activity achieved by fluoro to chloro replacement on the central aryl ring. These results indicate that the NOD1 signaling pathway, similarly to activation of NOD2, is amenable to modulation by small molecules that do not target RIP2 kinase. These compounds should prove useful tools to investigate the importance of NOD1 activation in various inflammatory processes and have potential clinical utility in diseases driven by hyperactive NOD1 signaling.


Assuntos
Benzotiazóis/farmacologia , Proteína Adaptadora de Sinalização NOD1/metabolismo , Quinazolinonas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Xantinas/farmacologia , Animais , Humanos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , Fosforilação , Ligação Proteica , Relação Estrutura-Atividade
5.
PLoS One ; 8(8): e69619, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23936340

RESUMO

NOD2 is an intracellular pattern recognition receptor that assembles with receptor-interacting protein (RIP)-2 kinase in response to the presence of bacterial muramyl dipeptide (MDP) in the host cell cytoplasm, thereby inducing signals leading to the production of pro-inflammatory cytokines. The dysregulation of NOD2 signaling has been associated with various inflammatory disorders suggesting that small-molecule inhibitors of this signaling complex may have therapeutic utility. To identify inhibitors of the NOD2 signaling pathway, we utilized a cell-based screening approach and identified a benzimidazole diamide compound designated GSK669 that selectively inhibited an MDP-stimulated, NOD2-mediated IL-8 response without directly inhibiting RIP2 kinase activity. Moreover, GSK669 failed to inhibit cytokine production in response to the activation of Toll-like receptor (TLR)-2, tumor necrosis factor receptor (TNFR)-1 and closely related NOD1, all of which share common downstream components with the NOD2 signaling pathway. While the inhibitors blocked MDP-induced NOD2 responses, they failed to block signaling induced by NOD2 over-expression or single stranded RNA, suggesting specificity for the MDP-induced signaling complex and activator-dependent differences in NOD2 signaling. Investigation of structure-activity relationship allowed the identification of more potent analogs that maintained NOD2 selectivity. The largest boost in activity was achieved by N-methylation of the C2-ethyl amide group. These findings demonstrate that the NOD2 signaling pathway is amenable to modulation by small molecules that do not target RIP2 kinase activity. The compounds we identified should prove useful tools to investigate the importance of NOD2 in various inflammatory processes and may have potential clinical utility.


Assuntos
Amidas/química , Benzimidazóis/química , Benzimidazóis/farmacologia , Proteína Adaptadora de Sinalização NOD2/metabolismo , Transdução de Sinais/efeitos dos fármacos , Citocinas/metabolismo , Células HEK293 , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , NF-kappa B/metabolismo , Relação Estrutura-Atividade , Receptor 2 Toll-Like/metabolismo
6.
Arch Biochem Biophys ; 412(1): 3-12, 2003 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-12646261

RESUMO

The C-terminal alpha-amide moiety of most peptide hormones arises by the posttranslational cleavage of a glycine-extended precursor in a reaction catalyzed by bifunctional peptidylglycine alpha-amidating monooxygenase (PAM). Glutathione and the S-alkylated glutathiones have a C-terminal glycine and are, thus, potential substrates for PAM. The addition of PAM to glutathione, a series of S-alkylated glutathiones, and leukotriene C(4) results in the consumption of O(2) and the production of the corresponding amidated peptide and glyoxylate. This reaction proceeds in two steps with the intermediate formation of a C-terminal alpha-hydroxyglycine-extended peptide. Amidated glutathione (gammaGlu-Cys-amide) is a relatively poor substrate for glutathione S-transferase with a V/K value that is 1.3% of that for glutathione. Peptide substrates containing a penultimate hydrophobic or sulfur-containing amino acid exhibit the highest (V/K)(app) values for PAM-catalyzed amidation. The S-alkylated glutathiones incorporate both features in the penultimate position with S-decylglutathione having the highest (V/K)(app) of the substrates described in this report.


Assuntos
Glutationa/química , Leucotrieno C4/química , Oxigenases de Função Mista/química , Complexos Multienzimáticos/química , Aminoácidos/química , Animais , Cromatografia Líquida de Alta Pressão , Cromatografia Líquida , Relação Dose-Resposta a Droga , Glutationa Transferase/metabolismo , Cavalos , Hidrólise , Cinética , Espectrometria de Massas , Modelos Químicos , Oxigênio/metabolismo , Peptídeos/química , Ligação Proteica , Estrutura Terciária de Proteína , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA