Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Inorg Chem ; 63(2): 1020-1034, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38176690

RESUMO

Zerovalent scandium, zirconium, hafnium, and manganese nanoparticles are prepared by reduction of ScCl3, ZrCl4, HfCl4, and MnCl2 with lithium or sodium naphthalenide in a one-pot, liquid-phase synthesis. Small-sized monocrystalline nanoparticles are obtained with diameters of 2.4 ± 0.2 nm (Sc), 4.0 ± 0.9 nm (Zr), 8.0 ± 3.9 nm (Hf) and 2.4 ± 0.3 nm (Mn). Thereof, Zr(0) and Hf(0) nanoparticles with such size are shown for the first time. To probe the reactivity and reactions of the as-prepared Sc(0), Zr(0), Hf(0), and Mn(0) nanoparticles, they are exemplarily reacted in the liquid phase (e.g., THF, toluene, ionic liquids) with different sterically demanding, monodentate to multidentate ligands, mainly comprising O-H and N-H acidic alcohols and amines. These include isopropanol (HOiPr), 1,1'-bi-2-naphthol (H2binol), N,N'-bis(salicylidene)ethylenediamine (H2salen), 2-mercaptopyridine (2-Hmpy), 2,6-diisopropylaniline (H2dipa), carbazole (Hcz), triphenylphosphane (PPh3), N,N,N',N'-tetramethylethylenediamine (tmeda), 2,2'-bipyridine (bipy), N,N'-diphenylformamidine (Hdpfa), N,N'-(2,6-diisopropylphenyl)-2,4-pentanediimine ((dipp)2nacnacH), 2,2'-dipydridylamine (Hdpa), and 2,6-bis(2-benzimidazolyl)pyridine (H2bbp). As a result, 22 new compounds are obtained, which frequently exhibit a metal center coordinated only by the sterically demanding ligand. Options and restrictions for the liquid-phase syntheses of novel coordination compounds using the oxidation of base-metal nanoparticles near room temperature are evaluated.

2.
Small ; 19(38): e2301997, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37203272

RESUMO

Magnetic particle imaging (MPI) is a powerful and rapidly growing tomographic imaging technique that allows for the non-invasive visualization of superparamagnetic nanoparticles (NPs) in living matter. Despite its potential for a wide range of applications, the intrinsic quantitative nature of MPI has not been fully exploited in biological environments. In this study, a novel NP architecture that overcomes this limitation by maintaining a virtually unchanged effective relaxation (Brownian plus Néel) even when immobilized is presented. This superparamagnetic magnetite architecture made of phenolic resin hollow spheres coated with Eu(III) containing silica nanoparticles (SMART RHESINs) was synthesized and studied. Magnetic particle spectroscopy (MPS) measurements confirm their suitability for potential MPI applications. Photobleaching studies show an unexpected photodynamic due to the fluorescence emission peak of the europium ion in combination with the phenol formaldehyde resin (PFR). Cell metabolic activity and proliferation behavior are not affected. Colocalization experiments reveal the distinct accumulation of SMART RHESINs near the Golgi apparatus. Overall, SMART RHESINs show superparamagnetic behavior and special luminescent properties without acute cytotoxicity, making them suitable for bimodal imaging probes for medical use like cancer diagnosis and treatment. SMART RHESINs have the potential to enable quantitative MPS and MPI measurements both in mobile and immobilized environments.


Assuntos
Nanopartículas de Magnetita , Nanopartículas , Óxido Ferroso-Férrico , Dióxido de Silício , Tomografia , Nanopartículas/química , Formaldeído , Fenóis , Nanopartículas Magnéticas de Óxido de Ferro , Fenômenos Magnéticos , Nanopartículas de Magnetita/química
3.
Inorg Chem ; 61(7): 3072-3077, 2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-35130701

RESUMO

Zerovalent samarium nanoparticles (1.7 ± 0.2 nm in size) are used as the starting material to prepare single crystals of the novel polynuclear samarium oxo cluster [Sm6O4(cbz)10(thf)6]·2C7H8. The reaction is performed by oxidation with carbazole (CbzH) in tetrahydrofuran (THF) at 50 °C with subsequent crystallization in toluene (C7H8). The oxo cluster contains noncharged molecular units with a central Sm6O4 core. Single-crystal structure analysis and infrared spectroscopy confirm the oxidation of CbzH with the formation of (cbz)-. Polynuclear carbazole complexes are generally rare and here prepared using metal nanoparticles as a reactive starting material for the first time. The reaction with CbzH as a sterically demanding ligand exemplarily shows the feasibility of rare-earth-metal nanoparticles for obtaining new compounds with complex composition and structure.

4.
Small ; 17(47): e2104441, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34697908

RESUMO

Advances in controlling energy migration pathways in core-shell lanthanide (Ln)-based hetero-nanocrystals (HNCs) have relied heavily on assumptions about how optically active centers are distributed within individual HNCs. In this article, it is demonstrated that different types of interface patterns can be formed depending on shell growth conditions. Such interface patterns are not only identified but also characterized with spatial resolution ranging from the nanometer- to the atomic-scale. In the most favorable cases, atomic-scale resolved maps of individual particles are obtained. It is also demonstrated that, for the same type of core-shell architecture, the interface pattern can be engineered with thicknesses of just 1 nm up to several tens of nanometers. Total alloying between the core and shell domains is also possible when using ultra-small particles as seeds. Finally, with different types of interface patterns (same architecture and chemical composition of the core and shell domains) it is possible to modify the output color (yellow, red, and green-yellow) or change (improvement or degradation) the absolute upconversion quantum yield. The results presented in this article introduce an important paradigm shift and pave the way toward the emergence of a new generation of core-shell Ln-based HNCs with better control over their atomic-scale organization.

5.
Angew Chem Int Ed Engl ; 60(32): 17373-17377, 2021 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-33929069

RESUMO

The first liquid-phase synthesis of high-quality, small-sized rare-earth metal nanoparticles (1-3 nm)-ranging from lanthanum as one of the largest (187 pm) to scandium as the smallest (161 pm) rare-earth metal-is shown. Size, oxidation state, and reactivity of the nanoparticles are examined (e.g., electron microscopy, electron spectroscopy, X-ray absorption spectroscopy, selected reactions). Whereas the nanoparticles are highly reactive (e.g. in contact to air and water), they are chemically stable as THF suspensions and powders under inert conditions. The reactivity can be controlled to obtain inorganic and metal-organic compounds at room temperature.

6.
Microsc Microanal ; 26(1): 102-111, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31918774

RESUMO

Nanoporous, high-purity magnesium nitride (Mg3N2) was synthesized with a liquid ammonia-based process, for potential applications in optoelectronics, gas separation and catalysis, since these applications require high material purity and crystallinity, which has seldom been demonstrated in the past. One way to evaluate the degree of crystalline near-range order and atomic environment is electron energy-loss spectroscopy (EELS) in a transmission electron microscope. However, there are hardly any data on Mg3N2, which makes identification of electron energy-loss near-edge structure (ELNES) features difficult. Therefore, we have studied nanoporous Mg3N2 with EELS in detail in comparison to EELS spectra of bulk Mg3N2, which was analyzed as a reference material. The N-K and Mg-K edges of both materials are similar. Despite having the same crystal structure, however, there are differences in fine-structural features, such as shifts and absences of peaks in the N-K and Mg-K edges of nanoporous Mg3N2. These differences in ELNES are attributed to coordination changes in nanoporous Mg3N2 caused by the significantly smaller crystallite size of 2-6 nm compared to the larger (25-125 nm) crystal size in a bulk material.

7.
Phys Chem Chem Phys ; 18(24): 16237-44, 2016 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-27251452

RESUMO

ZnO nanoparticles (NPs) synthesized by pulsed laser ablation (PLAL) of a zinc plate in deionized water were investigated by time-resolved photoluminescence (PL) and complementary techniques (TEM, AFM, µRaman). HRTEM images show that PLAL produces crystalline ZnO NPs in wurtzite structure with a slightly distorted lattice parameter a. Consistently, optical spectra show the typical absorption edge of wurtzite ZnO (Eg = 3.38 eV) and the related excitonic PL peaked at 3.32 eV with a subnanosecond lifetime. ZnO NPs display a further PL peaking at 2.2 eV related to defects, which shows a power law decay kinetics. Thermal annealing in O2 and in a He atmosphere produces a reduction of the A1(LO) Raman mode at 565 cm(-1) associated with oxygen vacancies, accompanied by a decrease of defect-related emission at 2.2 eV. Based on our experimental results the emission at 2.2 eV is proposed to originate from a photo-generated hole in the valence band recombining with an electron deeply trapped in a singly ionized oxygen vacancy. This investigation clarifies important aspects of the photophysics of ZnO NPs and indicates that ZnO emission can be controlled by thermal annealing, which is important in view of optoelectronic applications.

8.
Angew Chem Int Ed Engl ; 54(34): 9866-70, 2015 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-26190645

RESUMO

Mo(0), W(0), Fe(0), Ru(0), Re(0), and Zn(0) nanoparticles­essentially base metals­are prepared as a general strategy by a sodium naphthalenide ([NaNaph])-driven reduction of simple metal chlorides in ethers (1,2-dimethoxyethane (DME), tetrahydrofuran (THF)). All the nanoparticles have diameters ≤10 nm, and they can be obtained either as powder samples or long-term stable suspensions. Direct follow-up reactions (e.g., Mo(0)+S8, FeCl3+AsCl3, ReCl5+MoCl5), moreover, allow the preparation of MoS2, FeAs2, or Re4Mo nanoparticles of similar size as the pristine metals (≤10 nm).

9.
Nanoscale ; 16(4): 1692-1702, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38131190

RESUMO

The upconversion phenomenon allows for the emission of nanoparticles (NPs) under excitation with near-infrared (NIR) light. Such property is demanded in biology and medicine to detect or treat diseases such as tumours. The transparency of biological systems for NIR light is limited to three spectral ranges, called biological windows. However, the most frequently used excitation laser to obtain upconversion is out of these ranges, with a wavelength of around 975 nm. In this article, we show an alternative - Tm3+/Er3+-doped NPs that can convert 1208 nm excitation radiation, which is in the range of the 2nd biological window, to visible light within the 1st biological window. The spectroscopic properties of the core@shell NaYF4:Tm3+@NaYF4 and NaYF4:Er3+,Tm3+@NaYF4 NPs revealed a complex mechanism responsible for the observed upconversion. To explain emission in the studied NPs, we propose an energy looping mechanism: a sequence of ground state absorption, energy transfers and cross-relaxation (CR) processes between Tm3+ ions. Next, the excited Tm3+ ions transfer the absorbed energy to Er3+ ions, which results in green, red and NIR emission at 526, 546, 660, 698, 802 and 982 nm. The ratio between these bands is temperature-dependent and can be used in remote optical thermometers with high relative temperature sensitivity, up to 2.37%/°C at 57 °C. The excitation and emission properties of the studied NPs fall within 1st and 2nd biological windows, making them promising candidates for studies in biological systems.

10.
Nat Commun ; 14(1): 4462, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37491427

RESUMO

Short-wave infrared (SWIR) fluorescence could become the new gold standard in optical imaging for biomedical applications due to important advantages such as lack of autofluorescence, weak photon absorption by blood and tissues, and reduced photon scattering coefficient. Therefore, contrary to the visible and NIR regions, tissues become translucent in the SWIR region. Nevertheless, the lack of bright and biocompatible probes is a key challenge that must be overcome to unlock the full potential of SWIR fluorescence. Although rare-earth-based core-shell nanocrystals appeared as promising SWIR probes, they suffer from limited photoluminescence quantum yield (PLQY). The lack of control over the atomic scale organization of such complex materials is one of the main barriers limiting their optical performance. Here, the growth of either homogeneous (α-NaYF4) or heterogeneous (CaF2) shell domains on optically-active α-NaYF4:Yb:Er (with and without Ce3+ co-doping) core nanocrystals is reported. The atomic scale organization can be controlled by preventing cation intermixing only in heterogeneous core-shell nanocrystals with a dramatic impact on the PLQY. The latter reached 50% at 60 mW/cm2; one of the highest reported PLQY values for sub-15 nm nanocrystals. The most efficient nanocrystals were utilized for in vivo imaging above 1450 nm.

11.
Microsc Microanal ; 18(1): 212-7, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22153521

RESUMO

Single atoms can be considered as the most basic objects for electron microscopy to test the microscope performance and basic concepts for modeling image contrast. In this work high-resolution transmission electron microscopy was applied to image single platinum, molybdenum, and titanium atoms in an aberration-corrected transmission electron microscope. The atoms are deposited on a self-assembled monolayer substrate that induces only negligible contrast. Single-atom contrast simulations were performed on the basis of Weickenmeier-Kohl and Doyle-Turner form factors. Experimental and simulated image intensities are in quantitative agreement on an absolute intensity scale, which is provided by the vacuum image intensity. This demonstrates that direct testing of basic properties such as form factors becomes feasible.

12.
Chem Commun (Camb) ; 58(54): 7499-7502, 2022 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-35604276

RESUMO

Aluminium nanoparticles, Al(0), are obtained via liquid-phase synthesis at 25 °C. Accordingly, AlBr3 is reduced by lithium naphthalenide ([LiNaph]) in toluene in the presence of N,N,N',N'-tetramethylethylenediamine (TMEDA). The Al(0) nanoparticles are small (5.6 ± 1.5 nm) and highly crystalline. A light yellow colour and absorption at 250-350 nm are related to the plasmon-resonance absorption. Due to TMEDA functionalization, the Al(0) nanoparticles are colloidally and chemically stable, but show high reactivity after TMEDA removal.

13.
ACS Appl Mater Interfaces ; 14(6): 7756-7767, 2022 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-35107267

RESUMO

Hydrogen (H2) fuel production from hazardous contaminants is not only of economic importance but also of significance for the environment and health. Hydrogen production is exemplified in this work by using bismuth sulfide (Bi2S3) sandwiched in between zinc sulfide (ZnS) and zinc oxide (ZnO) as dual-heterojunction photoelectrode to photoelectrochemically extract H2 from sulfide- and sulfite-containing wastewater, which is emitted in enormous quantities from the petrochemical industries. The H2 evolution rate over the ZnS/Bi2S3/ZnO photoelectrode under solar illumination amounts to 112.8 µmol cm-2 h-1, of which the photocurrent density in the meantime reaches 10.7 mA cm-2, by far exceeding those reported for additional Bi2S3-based counterparts in the literature. Such superior performance is ascribed on one hand to the broadband sunlight-harvesting ability of Bi2S3 that gives rise to respectable photoexcited electron-hole pairs. These photogenerated charge carriers are subsequently rectified by the built-in electric field at the ZnS/Bi2S3 and Bi2S3/ZnO heterojunctions to flow in the opposite directions to well circumvent the recombination losses and, most importantly, in turn contribute substantially to the H2 evolution reaction.

14.
ACS Appl Mater Interfaces ; 14(2): 2551-2563, 2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-34985246

RESUMO

Carbon nanodots (CDs) are a new class of carbon-based nanoparticles endowed with photoluminescence, high specific surface area, and good photothermal conversion, which have spearheaded many breakthroughs in medicine, especially in drug delivery and cancer theranostics. However, the tight control of their structural, optical, and biological properties and the synthesis scale-up have been very difficult so far. Here, we report for the first time an efficient protocol for the one-step synthesis of decagram-scale quantities of N,S-doped CDs with a narrow size distribution, along with a single nanostructure multicolor emission, high near-infrared (NIR) photothermal conversion efficiency, and selective reactive oxygen species (ROS) production in cancer cells. This allows achieving targeted and multimodal cytotoxic effects (i.e., photothermal and oxidative stresses) in cancer cells by applying biocompatible NIR laser sources that can be remotely controlled under the guidance of fluorescence imaging. Hence, our findings open up a range of possibilities for real-world biomedical applications, among which is cancer theranostics. In this work, indocyanine green is used as a bidentate SOx donor which has the ability to tune surface groups and emission bands of CDs obtained by solvothermal decomposition of citric acid and urea in N,N-dimethylformamide. The co-doping implies various surface states providing transitions in the visible region, thus eliciting a tunable multicolor emission from blue to red and excellent photothermal efficiency in the NIR region useful in bioimaging applications and image-guided anticancer phototherapy. The fluorescence self-tracking capability of SOx-CDs reveals that they can enter cancer cells more quickly than healthy cell lines and undergo a different intracellular fate after cell internalization. This could explain why sulfur doping entails pro-oxidative activities by triggering more ROS generation in cancer cells when compared to healthy cell lines. We also find that oxidative stress can be locally enhanced under the effects of a NIR laser at moderate power density (2.5 W cm-2). Overall, these findings suggest that SOx-CDs are endowed with inherent drug-independent cytotoxic effects toward cancer cells, which would be selectively enhanced by external NIR light irradiation and helpful in precision anticancer approaches. Also, this work opens a debate on the role of CD surface engineering in determining nanotoxicity as a function of cell metabolism, thus allowing a rational design of next-generation nanomaterials with targeted anticancer properties.


Assuntos
Antineoplásicos/farmacologia , Materiais Biocompatíveis/farmacologia , Carbono/farmacologia , Nanopartículas/química , Antineoplásicos/síntese química , Antineoplásicos/química , Materiais Biocompatíveis/química , Carbono/química , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Raios Infravermelhos , Teste de Materiais , Estrutura Molecular , Imagem Óptica , Espécies Reativas de Oxigênio/metabolismo
15.
ChemistryOpen ; 10(3): 334-339, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33369889

RESUMO

TiN and ZnSiN2 nanoparticles are obtained via a novel pyridine-based synthesis route. This one-pot liquid-phase route strictly avoids all oxygen sources (including starting materials, surface functionalization, solvents), which is highly relevant in regard of the material purity and material properties. Colloidally stable suspensions of crystalline, small-sized TiN (5.4±0.4 nm) and ZnSiN2 (5.2±1.1 nm) are instantaneously available from the liquid phase. Elemental analysis and electron energy loss spectroscopy confirm the purity of the compounds and specifically the absence of oxygen. The as-prepared ZnSiN2 show yellowish emission (500-700 nm) already at room temperature with its maximum at 570 nm.

16.
ACS Appl Mater Interfaces ; 13(41): 49232-49241, 2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34609127

RESUMO

Carbon dots are an emerging family of zero-dimensional nanocarbons behaving as tunable light harvesters and photoactivated charge donors. Coupling them to carbon nanotubes, which are well-known electron acceptors with excellent charge transport capabilities, is very promising for several applications. Here, we first devised a route to achieve the stable electrostatic binding of carbon dots to multi- or single-walled carbon nanotubes, as confirmed by several experimental observations. The photoluminescence of carbon dots is strongly quenched when they contact either semiconductive or conductive nanotubes, indicating a strong electronic coupling to both. Theoretical simulations predict a favorable energy level alignment within these complexes, suggesting a photoinduced electron transfer from dots to nanotubes, which is a process of high functional interest. Femtosecond transient absorption confirms indeed an ultrafast (<100 fs) electron transfer independent of nanotubes being conductive or semiconductive in nature, followed by a much slower back electron transfer (≈60 ps) from the nanotube to the carbon dots. The high degree of charge separation and delocalization achieved in these nanohybrids entails significant photocatalytic properties, as we demonstrate by the reduction of silver ions in solution. The results are very promising in view of using these "all-carbon" nanohybrids as efficient light harvesters for applications in artificial photocatalysis and photosynthesis.

17.
Chem Commun (Camb) ; 56(15): 2312-2315, 2020 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-31989136

RESUMO

GaN nanoparticles, 3-8 nm in diameter, are prepared by a microwave-assisted reaction of GaCl3 and KNH2 in ionic liquids. Instantaneously after the liquid-phase synthesis, the ß-GaN nanoparticles are single-crystalline. The band gap is blue-shifted by 0.6 eV in comparison to bulk-GaN indicating quantum confinement effects. The GaN nanoparticles show intense green emission with a quantum yield of 55 ± 3%.

18.
Nanoscale Adv ; 2(9): 3912-3920, 2020 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36132793

RESUMO

Advanced quantitative TEM/EDXS methods were used to characterize different ultrastructures of magnetic Fe-Au core-shell nanoparticles formed by laser ablation in liquids. The findings demonstrate the presence of Au-rich alloy shells with varying composition in all structures and elemental bcc Fe cores. The identified structures are metastable phases interpreted by analogy to the bulk phase diagram. Based on this, we propose a formation mechanism of these complex ultrastructures. To show the magnetic response of these magnetic core nanoparticles protected by a noble metal shell, we demonstrate the formation of nanostrands in the presence of an external magnetic field. We find that it is possible to control the lengths of these strands by the iron content within the alloy nanoparticles.

19.
RSC Adv ; 9(53): 31102-31114, 2019 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-35529383

RESUMO

Garnet type solid electrolytes are promising candidates for replacing the flammable liquid electrolytes conventionally used in Li-ion batteries. Al-doped Li7La3Zr2O12 (LLZO) is synthesized using nebulized spray pyrolysis and field assisted sintering technology (FAST), a novel synthesis route ensuring the preparation of samples with a homogeneous elemental distribution and dense ceramic electrolytes. Ceramic preparation utilizing field assisted sintering, in particular the applied pressure, has significant influence on the material structure, i.e. microstrain, and thereby its electrochemical performance. The phenomenon of microstrain enhancement of electrochemical performance might open a new route towards improved garnet solid electrolytes. A detailed mechanism is proposed for the lattice distortion and resulting microstrain during sintering. The charge transfer resistance of Li-ions at the interface between LLZO and Li is characterized using AC impedance spectroscopy and is amongst the best reported values to date. Additionally, the solid electrolyte is integrated in a full hybrid cell, a practical approach combining all the advantages of the solid electrolyte, while maintaining good contact with the cathode material.

20.
Adv Mater ; 31(26): e1900623, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30942509

RESUMO

The production of upconverting nanostructures with tailored optical properties is of major technological interest, and rapid progress toward the realization of such production has been made in recent years. Ultimately, accurate understanding of nanostructure organization will lead to design rules for accurately tailoring optical properties. Here, the context of open questions still of general importance to the upconversion and nanocrystal communities is presented, with a particular emphasis on the structure-property relationships of core-shell upconverting nanocrystals. Although the optical properties of the latter have been thoroughly investigated, little is known regarding their atomic-scale organization. Indeed, solving the atomic-scale structure of such nanomaterials is challenging because of their intrinsic nonperiodic nature. Familiar concepts of crystallography are no longer appropriate; chemical and structural modulation waves must be introduced. To reveal the exact core-shell structures, innovative characterization techniques need to be applied and developed, as discussed herein. The continued development and application of structural characterization techniques will be vital to consolidate the currently incomplete link between atomic-scale structure and upconversion properties. This will ultimately provide a valuable contribution to the emerging detailed guidelines on how to better design upconverting nanostructures to achieve given optical properties in terms of efficiency, absorption, spectral emission, and dynamics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA