RESUMO
Neurovascular MR angiography (MRA) is an evolving imaging technique and is crucial for the workup of numerous neurologic disorders. While CT angiography (CTA) provides a more rapid imaging assessment, in select patients it can impart a small risk of contrast material-induced nephrotoxicity or radiation-associated cancers. In addition, MRA offers some advantages over CTA for neurovascular evaluation, including higher temporal resolution and the capability for vessel wall imaging. This module is the third in a series created on behalf of the Society for Magnetic Resonance Angiography (SMRA), a group of researchers and clinicians who are passionate about the benefits of MRA but understand its challenges. The full digital presentation is available online. Work of the U.S. Government published under an exclusive license with the RSNA.
Assuntos
Meios de Contraste , Angiografia por Ressonância Magnética , Angiografia por Tomografia Computadorizada , HumanosRESUMO
OBJECTIVEThere are limited data concerning the long-term functional outcomes of patients with penetrating brain injury. Reports from civilian cohorts are small because of the high reported mortality rates (as high as 90%). Data from military populations suggest a better prognosis for penetrating brain injury, but previous reports are hampered by analyses that exclude the point of injury. The purpose of this study was to provide a description of the long-term functional outcomes of those who sustain a combat-related penetrating brain injury (from the initial point of injury to 24 months afterward).METHODSThis study is a retrospective review of cases of penetrating brain injury in patients who presented to the Role 3 Multinational Medical Unit at Kandahar Airfield, Afghanistan, from January 2010 to March 2013. The primary outcome of interest was Glasgow Outcome Scale (GOS) score at 6, 12, and 24 months from date of injury.RESULTSA total of 908 cases required neurosurgical consultation during the study period, and 80 of these cases involved US service members with penetrating brain injury. The mean admission Glasgow Coma Scale (GCS) score was 8.5 (SD 5.56), and the mean admission Injury Severity Score (ISS) was 26.6 (SD 10.2). The GOS score for the cohort trended toward improvement at each time point (3.6 at 6 months, 3.96 at 24 months, p > 0.05). In subgroup analysis, admission GCS score ≤ 5, gunshot wound as the injury mechanism, admission ISS ≥ 26, and brain herniation on admission CT head were all associated with worse GOS scores at all time points. Excluding those who died, functional improvement occurred regardless of admission GCS score (p < 0.05). The overall mortality rate for the cohort was 21%.CONCLUSIONSGood functional outcomes were achieved in this population of severe penetrating brain injury in those who survived their initial resuscitation. The mortality rate was lower than observed in civilian cohorts.
Assuntos
Lesões Encefálicas/reabilitação , Traumatismos Cranianos Penetrantes/reabilitação , Militares , Ferimentos por Arma de Fogo/reabilitação , Adulto , Lesões Encefálicas/cirurgia , Feminino , Escala de Coma de Glasgow , Traumatismos Cranianos Penetrantes/cirurgia , Humanos , Masculino , Prognóstico , Estudos Retrospectivos , Resultado do Tratamento , Ferimentos por Arma de Fogo/cirurgiaAssuntos
Adenocarcinoma de Pulmão/tratamento farmacológico , Antineoplásicos Imunológicos/efeitos adversos , Neurite do Plexo Braquial/induzido quimicamente , Neoplasias Pulmonares/tratamento farmacológico , Nervo Mediano/diagnóstico por imagem , Nivolumabe/efeitos adversos , Potenciais de Ação , Idoso , Neurite do Plexo Braquial/diagnóstico , Neurite do Plexo Braquial/diagnóstico por imagem , Neurite do Plexo Braquial/fisiopatologia , Eletromiografia , Humanos , Masculino , Nervo Mediano/fisiopatologia , UltrassonografiaRESUMO
Current risk stratification for stroke is still based upon percentage of carotid stenosis, despite this measure providing minimal patient-specific information on the actual risk of stroke for both symptomatic individuals without significant carotid artery stenosis as well as asymptomatic carotid stenosis patients. A continuously growing body of literature suggests that the identification and quantification of certain carotid plaque characteristics, including lipid-rich necrotic core (LRNC), thin/ruptured fibrous cap (FC), and intraplaque hemorrhage (IPH), provide a superior means of predicting future stroke. These characteristics are identifiable via magnetic resonance imaging (MRI), with most features detectable using commercially available coils and sequences utilized in routine clinical practice in as little as 4 minutes. The presence of LRNC, a thin/ruptured FC, and IPH is associated with increased risk of future stroke or TIA. Plaques with greater than 40% LRNC with a thin overlying FC are prone to rupture. LRNC is T2 hypointense and lacks enhancement on contrast enhanced T1 weighted images. Increasing LRNC size is associated with the development of new ulceration, FC rupture, increasing plaque burden, as well as fatal and nonfatal myocardial infarction, ischemic stroke, hospitalization for acute coronary syndrome (ACS), and symptom-driven revascularization, allowing for MR biomarkers of carotid plaque vulnerability to be utilized for systemic athero-thrombotic risk and not just stroke/TIA. LRNC typically shrinks with appropriate statin therapy, with PCSK9 inhibitors possibly playing a role in patients with inadequate response. Carotid plaques with IPH represent a more advanced stage of atherosclerotic disease. IPH is detectable with field strengths of both 3.0 T and 1.5 T and will demonstrate high signal on all T1 weighted imaging sequences. The presence of IPH increases the risk of future stroke in both symptomatic and asymptomatic patients, with multivariate analysis identifying IPH as a predictor of stroke, independent of percent stenosis, with no statistical difference in men vs. women, demonstrating that simple carotid stenosis measurements and traditional risk factor analysis may be inadequate in identifying patients at the highest risk for adverse cerebrovascular events. In the evaluation for recurrent stroke in recently symptomatic patients with >50% carotid stenosis, the estimated annual stroke risk is 23.2% in IPH+ patients and only 0.6% in IPH- patients, calling into question the current risk-benefit assessment for CEA. Additionally, a recent meta-analysis suggests that IPH+ plaque in patients with symptomatic <50% stenosis may be the etiology of embolic strokes previously labeled as "embolic stroke of undetermined source" (ESUS). There are no prospective drug trials testing the ability of any lipid-lowering therapies to decrease IPH and/or total plaque volume (TPV). Given the continuously increasing evidence of IPH as a significant predictor of carotid plaque progression and future adverse vascular events, trials aimed at targeted therapy for IPH represents a significant need.