Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Viruses ; 16(2)2024 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-38399961

RESUMO

Since the beginning of the COVID-19 pandemic, there has been a significant need to develop antivirals and vaccines to combat the disease. In this work, we developed llama-derived nanobodies (Nbs) directed against the receptor binding domain (RBD) and other domains of the Spike (S) protein of SARS-CoV-2. Most of the Nbs with neutralizing properties were directed to RBD and were able to block S-2P/ACE2 interaction. Three neutralizing Nbs recognized the N-terminal domain (NTD) of the S-2P protein. Intranasal administration of Nbs induced protection ranging from 40% to 80% after challenge with the WA1/2020 strain in k18-hACE2 transgenic mice. Interestingly, protection was associated with a significant reduction in virus replication in nasal turbinates and a reduction in virus load in the brain. Employing pseudovirus neutralization assays, we identified Nbs with neutralizing capacity against the Alpha, Beta, Delta, and Omicron variants, including a Nb capable of neutralizing all variants tested. Furthermore, cocktails of different Nbs performed better than individual Nbs at neutralizing two Omicron variants (B.1.529 and BA.2). Altogether, the data suggest the potential of SARS-CoV-2 specific Nbs for intranasal treatment of COVID-19 encephalitis.


Assuntos
COVID-19 , Camelídeos Americanos , Anticorpos de Domínio Único , Animais , Camundongos , Humanos , Enzima de Conversão de Angiotensina 2/genética , Anticorpos de Domínio Único/genética , SARS-CoV-2/genética , Pandemias , Encéfalo , Camundongos Transgênicos , Glicoproteína da Espícula de Coronavírus/genética , Anticorpos Neutralizantes , Anticorpos Antivirais
2.
Mol Biochem Parasitol ; 254: 111552, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36731750

RESUMO

Multiple parasite lineages with different proliferation rates or fitness may coexist within a clinical malaria isolate, resulting in complex growth interactions and variations in phenotype. To elucidate the dynamics of parasite growth in multiclonal isolates, we measured growth rates (GRs) of three Plasmodium falciparum Cambodian isolates, including IPC_3445 (MRA-1236), IPC_5202 (MRA-1240), IPC_6403 (MRA-1285), and parasite lineages previously cloned from each of these isolates by limiting dilution. Following synchronization, in vitro cultures of each parasite line were maintained over four consecutive asexual cycles (192 h), with thin smears prepared at each 48-h cycle to estimate GR and fold change in parasitemia (FCP). Cell cycle time (CCT), the duration it takes for ring-stage parasites to develop into mature schizonts, was measured by monitoring the development of 0-3-h post-invasion rings for up to 52 h post-incubation. Laboratory lines 3D7 (MRA-102) and Dd2 (MRA-150) were used as controls. Significant differences in GR, FCP, and CCT were observed between parasite isolates and clonal lineages from each isolate. The parasite lines studied here have well-defined growth phenotypes and will facilitate basic malaria research and development of novel malaria interventions. These lines are available to malaria researchers through the MR4 collection of NIAID's BEI Resources Program.


Assuntos
Malária Falciparum , Malária , Parasitos , Animais , Plasmodium falciparum/genética , Malária Falciparum/parasitologia , Fenótipo
3.
bioRxiv ; 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36909623

RESUMO

Vaccination is critical for the control and prevention of viral outbreaks, yet conventional vaccine platforms may involve trade-offs between immunogenicity and safety. Insect-specific viruses have emerged as a novel vaccine platform to overcome this challenge. Detailed studies of humoral and T-cell responses induced by new insect-specific flavivirus (ISFV)-based vaccine platforms are needed to better understand correlates of protection and improve vaccine efficacy. Previously, we used a novel ISFV called Aripo virus (ARPV) to create a Zika virus (ZIKV) vaccine candidate (designated ARPV/ZIKV). ARPV/ZIKV demonstrated exceptional safety and single-dose efficacy, completely protecting mice from a lethal ZIKV challenge. Here, we explore the development of immune responses induced by ARPV/ZIKV immunization and evaluate its correlates of protection. Passive transfer of ARPV/ZIKV-induced immune sera to naïve mice prior to challenge emphasized the importance of neutralizing antibodies as a correlate of protection. Depletion of T-cells in vaccinated mice and adoptive transfer of ARPV/ZIKV-primed T-cells to naïve mice prior to challenge indicated that ARPV/ZIKV-induced CD4 + and CD8 + T-cell responses contribute to the observed protection but may not be essential for protection during ZIKV challenge. However, vaccination of Rag1 KO, Tcra KO, and muMt - mice demonstrated the critical role for ARPV/ZIKV-induced T-cells in developing protective immune responses following vaccination. Overall, both humoral and T-cell-mediated responses induced by ISFV-based vaccines are important for comprehensive immunity, and ISFV platforms continue to be a promising method for future vaccine development.

4.
Sci Rep ; 13(1): 19948, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37968443

RESUMO

Zika virus (ZIKV) is an important re-emerging flavivirus that presents a significant threat to human health worldwide. Despite its importance, no vaccines are approved for use in humans. Insect-specific flaviviruses (ISFVs) have recently garnered attention as an antigen presentation platform for vaccine development and diagnostic applications. Here, we further explore the safety, immunogenicity, and efficacy of a chimeric ISFV-Zika vaccine candidate, designated Aripo-Zika (ARPV/ZIKV). Our results show a near-linear relationship between increased dose and immunogenicity, with 1011 genome copies (i.e., 108 focus forming units) being the minimum dose required for protection from ZIKV-induced morbidity and mortality in mice. Including boosters did not significantly increase the short-term efficacy of ARPV/ZIKV-vaccinated mice. We also show that weanling mice derived from ARPV/ZIKV-vaccinated dams were completely protected from ZIKV-induced morbidity and mortality upon challenge, suggesting efficient transfer of maternally-derived protective antibodies. Finally, in vitro coinfection studies of ZIKV with Aripo virus (ARPV) and ARPV/ZIKV in African green monkey kidney cells (i.e., Vero-76) showed that ARPV and ARPV/ZIKV remain incapable of replication in vertebrate cells, despite the presence of active ZIKV replication. Altogether, our data continue to support ISFV-based vaccines, and specifically the ARPV backbone is a safe, immunogenic and effective vaccine strategy for flaviviruses.


Assuntos
Vacinas Virais , Infecção por Zika virus , Zika virus , Humanos , Animais , Camundongos , Chlorocebus aethiops , Zika virus/genética , Anticorpos Neutralizantes , Anticorpos Antivirais , Imunogenicidade da Vacina
5.
bioRxiv ; 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36993215

RESUMO

In this work, we developed llama-derived nanobodies (Nbs) directed to the receptor binding domain (RBD) and other domains of the Spike (S) protein of SARS-CoV-2. Nanobodies were selected after the biopanning of two VHH-libraries, one of which was generated after the immunization of a llama (lama glama) with the bovine coronavirus (BCoV) Mebus, and another with the full-length pre-fused locked S protein (S-2P) and the RBD from the SARS-CoV-2 Wuhan strain (WT). Most of the neutralizing Nbs selected with either RBD or S-2P from SARS-CoV-2 were directed to RBD and were able to block S-2P/ACE2 interaction. Three Nbs recognized the N-terminal domain (NTD) of the S-2P protein as measured by competition with biliverdin, while some non-neutralizing Nbs recognize epitopes in the S2 domain. One Nb from the BCoV immune library was directed to RBD but was non-neutralizing. Intranasal administration of Nbs induced protection ranging from 40% to 80% against COVID-19 death in k18-hACE2 mice challenged with the WT strain. Interestingly, protection was not only associated with a significant reduction of virus replication in nasal turbinates and lungs, but also with a reduction of virus load in the brain. Employing pseudovirus neutralization assays, we were able to identify Nbs with neutralizing capacity against the Alpha, Beta, Delta and Omicron variants. Furthermore, cocktails of different Nbs performed better than individual Nbs to neutralize two Omicron variants (B.1.529 and BA.2). Altogether, the data suggest these Nbs can potentially be used as a cocktail for intranasal treatment to prevent or treat COVID-19 encephalitis, or modified for prophylactic administration to fight this disease.

6.
Int J Parasitol Drugs Drug Resist ; 15: 152-161, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33780700

RESUMO

Natural infections of Plasmodium falciparum, the parasite responsible for the deadliest form of human malaria, often comprise multiple parasite lineages (haplotypes). Multiclonal parasite isolates may exhibit variable phenotypes including different drug susceptibility profiles over time due to the presence of multiple haplotypes. To test this hypothesis, three P. falciparum Cambodian isolates IPC_3445 (MRA-1236), IPC_5202 (MRA-1240) and IPC_6403 (MRA-1285) suspected to be multiclonal were cloned by limiting dilution, and the resulting clones genotyped at 24 highly polymorphic single nucleotide polymorphisms (SNPs). Isolates harbored up to three constituent haplotypes, and exhibited significant variability (p < 0.05) in susceptibility to chloroquine, mefloquine, artemisinin and piperaquine as measured by half maximal drug inhibitory concentration (IC50) assays and parasite survival assays, which measure viability following exposure to pharmacologically relevant concentrations of antimalarial drugs. The IC50 of the most abundant haplotype frequently reflected that of the uncloned parental isolate, suggesting that a single haplotype dominates the antimalarial susceptibility profile and masks the effect of minor frequency haplotypes. These results indicate that phenotypic variability in parasite isolates is often due to the presence of multiple haplotypes. Depending on intended end-use, clinical isolates should be cloned to yield single parasite lineages with well-defined phenotypes and genotypes. The availability of such standardized clonal parasite lineages through NIAID's BEI Resources program will aid research directed towards the development of diagnostics and interventions including drugs against malaria.


Assuntos
Antimaláricos , Malária Falciparum , Malária , Preparações Farmacêuticas , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Dissecação , Resistência a Medicamentos/genética , Haplótipos , Humanos , Malária/tratamento farmacológico , Malária Falciparum/tratamento farmacológico , Fenótipo , Plasmodium falciparum/genética , Proteínas de Protozoários/genética
7.
Pathogens ; 10(4)2021 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-33805389

RESUMO

La Crosse virus (LACV) is the leading cause of pediatric viral encephalitis in North America, and is an important public health pathogen. Historically, studies involving LACV pathogenesis have focused on lineage I strains, but no former work has explored the pathogenesis between or within lineages. Given the absence of LACV disease in endemic regions where a robust entomological risk exists, we hypothesize that some LACV strains are attenuated and demonstrate reduced neuroinvasiveness. Herein, we compared four viral strains representing all three lineages to determine differences in neurovirulence or neuroinvasiveness using three murine models. A representative strain from lineage I was shown to be the most lethal, causing >50% mortality in each of the three mouse studies. However, other strains only presented excessive mortality (>50%) within the suckling mouse neurovirulence model. Neurovirulence was comparable among strains, but viruses differed in their neuroinvasive capacities. Our studies also showed that viruses within lineage III vary in pathogenesis with contemporaneous strains, showing reduced neuroinvasiveness compared to an ancestral strain from the same U.S. state (i.e., Connecticut). These findings demonstrate that LACV strains differ markedly in pathogenesis, and that strain selection is important for assessing vaccine and therapeutic efficacies.

8.
Emerg Microbes Infect ; 10(1): 1649-1659, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34353229

RESUMO

Cache Valley virus (CVV) is a prevalent emerging pathogen of significant importance to agricultural and human health in North America. Emergence in livestock can result in substantial agroeconomic losses resulting from the severe embryonic lethality associated with infection during pregnancy. Although CVV pathogenesis has been well described in ruminants, small animal models are still unavailable, which limits our ability to study its pathogenesis and perform preclinical testing of therapeutics. Herein, we explored CVV pathogenesis, tissue tropism, and disease outcomes in a variety of murine models, including immune -competent and -compromised animals. Our results show that development of CVV disease in mice is dependent on innate immune responses, and type I interferon signalling is essential for preventing infection in mice. IFN-αßR-/- mice infected with CVV present with significant disease and lethal infections, with minimal differences in age-dependent pathogenesis, suggesting this model is appropriate for pathogenesis-related, and short- and long-term therapeutic studies. We also developed a novel CVV in utero transmission model that showed high rates of transmission, spontaneous abortions, and congenital malformations during infection. CVV infection presents a wide tissue tropism, with significant amplification in liver, spleen, and placenta tissues. Immune-competent mice are generally resistant to infection, and only show disease in an age dependent manner. Given the high seropositivity rates in regions of North America, and the continuing geographic expansion of competent mosquito vectors, the risk of epidemic and epizootic emergence of CVV is high, and interventions are needed for this important pathogen.


Assuntos
Vírus Bunyamwera/patogenicidade , Infecções por Bunyaviridae/transmissão , Infecções por Bunyaviridae/virologia , Modelos Animais de Doenças , Transmissão Vertical de Doenças Infecciosas , Camundongos , Animais , Feminino , Mosquitos Vetores/virologia , Gravidez
9.
Vaccines (Basel) ; 9(10)2021 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-34696250

RESUMO

Vaccination remains critical for viral disease outbreak prevention and control, but conventional vaccine development typically involves trade-offs between safety and immunogenicity. We used a recently discovered insect-specific flavivirus as a vector in order to develop an exceptionally safe, flavivirus vaccine candidate with single-dose efficacy. To evaluate the safety and efficacy of this platform, we created a chimeric Zika virus (ZIKV) vaccine candidate, designated Aripo/Zika virus (ARPV/ZIKV). ZIKV has caused immense economic and public health impacts throughout the Americas and remains a significant public health threat. ARPV/ZIKV vaccination showed exceptional safety due to ARPV/ZIKV's inherent vertebrate host-restriction. ARPV/ZIKV showed no evidence of replication or translation in vitro and showed no hematological, histological or pathogenic effects in vivo. A single-dose immunization with ARPV/ZIKV induced rapid and robust neutralizing antibody and cellular responses, which offered complete protection against ZIKV-induced morbidity, mortality and in utero transmission in immune-competent and -compromised murine models. Splenocytes derived from vaccinated mice demonstrated significant CD4+ and CD8+ responses and significant cytokine production post-antigen exposure. Altogether, our results further support that chimeric insect-specific flaviviruses are a promising strategy to restrict flavivirus emergence via vaccine development.

10.
Virology ; 562: 50-62, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34256244

RESUMO

We describe the isolation and characterization of a novel insect-specific flavivirus (ISFV), tentatively named Aripo virus (ARPV), that was isolated from Psorophora albipes mosquitoes collected in Trinidad. The ARPV genome was determined and phylogenetic analyses showed that it is a dual host associated ISFV, and clusters with the main mosquito-borne flaviviruses. ARPV antigen was significantly cross-reactive with Japanese encephalitis virus serogroup antisera, with significant cross-reactivity to Ilheus and West Nile virus (WNV). Results suggest that ARPV replication is limited to mosquitoes, as it did not replicate in the sandfly, culicoides or vertebrate cell lines tested. We also demonstrated that ARPV is endocytosed into vertebrate cells and is highly immunomodulatory, producing a robust innate immune response despite its inability to replicate in vertebrate systems. We show that prior infection or coinfection with ARPV limits WNV-induced disease in mouse models, likely the result of a robust ARPV-induced type I interferon response.


Assuntos
Flavivirus/imunologia , Imunomodulação , Vírus de Insetos/imunologia , Vertebrados/imunologia , Animais , Antígenos Virais/imunologia , Reações Cruzadas , Culicidae/virologia , Modelos Animais de Doenças , Flavivirus/genética , Flavivirus/isolamento & purificação , Flavivirus/patogenicidade , Genoma Viral/genética , Especificidade de Hospedeiro , Imunidade Inata , Vírus de Insetos/genética , Vírus de Insetos/isolamento & purificação , Vírus de Insetos/patogenicidade , Macrófagos/imunologia , Camundongos , Filogenia , Vertebrados/virologia , Interferência Viral , Replicação Viral , Febre do Nilo Ocidental/imunologia , Vírus do Nilo Ocidental/imunologia , Vírus do Nilo Ocidental/patogenicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA