Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Hum Mol Genet ; 25(8): 1588-99, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-26908600

RESUMO

Growing evidence suggests that amyotrophic lateral sclerosis (ALS) is a multisystem neurodegenerative disease that primarily affects motor neurons and, though less evidently, other neuronal systems. About 75% of sporadic and familial ALS patients show a subclinical degeneration of small-diameter fibers, as measured by loss of intraepidermal nerve fibers (IENFs), but the underlying biological causes are unknown. Small-diameter fibers are derived from small-diameter sensory neurons, located in dorsal root ganglia (DRG), whose biochemical hallmark is the expression of type III intermediate filament peripherin. We tested here the hypothesis that small-diameter DRG neurons of ALS mouse model SOD1(G93A)suffer from axonal stress and investigated the underlying molecular mechanism. We found that SOD1(G93A)mice display small fiber pathology, as measured by IENF loss, which precedes the onset of the disease. In vitro small-diameter DRG neurons of SOD1(G93A)mice show axonal stress features and accumulation of a peripherin splice variant, named peripherin56, which causes axonal stress through disassembling light and medium neurofilament subunits (NFL and NFM, respectively). Our findings first demonstrate that small-diameter DRG neurons of the ALS mouse model SOD1(G93A)display axonal stress in vitro and in vivo, thus sustaining the hypothesis that the effects of ALS disease spread beyond motor neurons. These results suggest a molecular mechanism for the small fiber pathology found in ALS patients. Finally, our data agree with previous findings, suggesting a key role of peripherin in the ALS pathogenesis, thus highlighting that DRG neurons mirror some dysfunctions found in motor neurons.


Assuntos
Processamento Alternativo , Substituição de Aminoácidos , Esclerose Lateral Amiotrófica/patologia , Gânglios Espinais/patologia , Periferinas/genética , Superóxido Dismutase-1/genética , Alanina/metabolismo , Esclerose Lateral Amiotrófica/genética , Animais , Células Cultivadas , Modelos Animais de Doenças , Gânglios Espinais/metabolismo , Regulação da Expressão Gênica , Glicina/metabolismo , Humanos , Camundongos , Fibras Nervosas/metabolismo , Fibras Nervosas/patologia , Periferinas/metabolismo , Células Receptoras Sensoriais/metabolismo , Células Receptoras Sensoriais/patologia
2.
J Peripher Nerv Syst ; 20(4): 387-91, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26309146

RESUMO

We investigated the agreement between simple indirect immunofluorescence (IF) and bright-field immunohistochemistry (BFI) on free-floating sections for intraepidermal nerve fiber density (IENFD) quantification. Fifty-five healthy subjects and 63 patients with probable small fiber neuropathy (SFN) underwent two adjacent skin biopsies at the distal leg processed by IF and BFI technique. Agreement between IENFD pairs obtained by each method was assessed by Bland-Altman testing. The area under the curve of the receiving operating characteristics (ROC) curves was used to compare the discrimination ability. The diagnostic judgment was based on sex and age-adjusted normative values. IF and BFI showed good correlation (r = 0.81), with a ratio of about 2:1 and a mean difference of 5.5 ± 3.0 IENF per millimeter between paired measures, as demonstrated by linear regression and Bland-Altman test analyses. The square root transformation confirmed a Poisson distribution of the data and a fixed bias between IF and BFI measurements. The ROC curves analysis demonstrated a striking overlap between IF and BFI (0.83 and 0.82; p = 0.72). The diagnosis of SFN disagreed in only 6.7% of cases when the judgment was based on a difference of >1 IENF from 5% cut-off value. IF and BFI showed comparable diagnostic efficiency when referred to appropriate normative reference values.


Assuntos
Epiderme/inervação , Eritromelalgia/patologia , Imunofluorescência/métodos , Imuno-Histoquímica/métodos , Microscopia/métodos , Fibras Nervosas/patologia , Adulto , Idoso , Biópsia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
3.
Am J Pathol ; 183(5): 1527-38, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24160324

RESUMO

Islet transplantation is a poorly investigated long-term strategy for insulin replacement and for treatment of complications in patients with diabetes. We investigated whether islet transplantation and insulin treatment can relieve diabetic neuropathy and rescue the residual endogenous pancreatic ß cells. We used a multimodal approach, with five groups of Sprague-Dawley rats studied for 8 months: control rats, diabetic rats, insulin-treated diabetic rats with moderate or mild hyperglycemia, and diabetic rats transplanted with microencapsulated islets. Islet transplantation normalized glycemia and increased body and muscle weight; it was also effective in reducing proteinuria and altered liver function. Transplantation significantly improved tail nerve conduction velocity, Na(+)-K(+)-ATPase activity, and morphological alterations in the sciatic nerve as evidenced by decrease in g-ratio; it also restored thermal and ameliorated mechanical nociceptive thresholds. Morphometric analysis of pancreas indicated a significant ß-cell volume increase in transplanted rats, compared with mildly and moderately hyperglycemic rats. Thus, allogeneic islet transplantation had a positive systemic effect in diabetic rats and induced regression of the established neuropathy and restitution of the typical characteristics of the islets. These findings strongly reinforce the need for improving glycemic control, not only to reverse established diabetic complications but also to improve ß-cell status in diabetic pancreas.


Assuntos
Complicações do Diabetes/patologia , Complicações do Diabetes/terapia , Células Secretoras de Insulina/patologia , Insulina/administração & dosagem , Transplante das Ilhotas Pancreáticas , Animais , Glicemia/metabolismo , Peso Corporal/efeitos dos fármacos , Complicações do Diabetes/sangue , Complicações do Diabetes/fisiopatologia , Glucagon/metabolismo , Teste de Tolerância a Glucose , Hiperglicemia/complicações , Hiperglicemia/patologia , Insulina/farmacologia , Insulina/uso terapêutico , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/enzimologia , Masculino , Condução Nervosa/efeitos dos fármacos , Nociceptividade/efeitos dos fármacos , Limiar da Dor/efeitos dos fármacos , Proteinúria/complicações , Proteinúria/patologia , Ratos , Ratos Endogâmicos Lew , Ratos Sprague-Dawley , Nervo Isquiático/efeitos dos fármacos , Nervo Isquiático/patologia , Nervo Isquiático/fisiopatologia , ATPase Trocadora de Sódio-Potássio/metabolismo , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo
4.
Eur J Hosp Pharm ; 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38448203

RESUMO

Brentuximab vedotin (BV) is an antibody-drug conjugate, consisting of a CD30-directed antibody, conjugated by a protease-cleavable linker to a microtubule disrupting agent auristatin E (MMAE). Although the safety datasheet of BV does not warn of severe toxic effects of extravasation, we report a third case of a patient with anaplastic large cell lymphoma who developed severe epidermal necrosis after extravasation. The reason for what happened could be attributed to the fact that MMAE belongs to the group of vinca alkaloids so it should be handled like other tissue-necrotising chemotherapeutics. Reporting of all cases of extravasation involving new conjugated chemotherapeutic drugs is of the utmost importance to be able to develop updated guidelines. Hospital pharmacists can provide information on how to manage extravasation, assess the potential risk, and have a crucial role in drafting hospital protocols.

5.
J Peripher Nerv Syst ; 18(1): 48-53, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23521644

RESUMO

The aim of this study was to estimate dermal nerve fiber length (DNFL) using a stereological sampling technique in comparison with a previously reported manual estimation. DNFL was analyzed in skin punch biopsy specimens from 24 healthy volunteers and 18 patients with small fiber neuropathy (SFN) using global spatial sampling that yields unbiased and reliable length estimation. The estimation was carried out in 50-µm biopsy sections after immunostaining with anti-protein gene product (PGP) 9.5 antibodies. The length of the PGP9.5-positive dermal nerves from the dermal-epidermal junction and 200 µm down was measured (DNFL mm(-2) ). Results were compared with our previously reported manual method. Patients showed a significantly (p < 0.0001) lower DNFL (105 mm(-2) ± 6.4 SD) than healthy subjects (246 mm(-2) ± 8.39 SD). Moderate correlation with age was observed for both healthy subjects (Pearson's r = -0.33) and patients (Pearson's r = -0.59). A significant (p < 0.001) correlation between global spatial sampling and manual estimation was observed in both patients and healthy subjects (Pearson's r = 0.62 and 0.61, respectively). These findings provide further evidence on the reliability of dermal nerve morphometry in human skin and strengthen the hypothesis that dermal nerve fibers undergo significant degeneration in SFN.


Assuntos
Derme/inervação , Fibras Nervosas/patologia , Doenças do Sistema Nervoso/patologia , Técnicas Estereotáxicas , Adulto , Idoso , Derme/patologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fibras Nervosas/metabolismo , Doenças do Sistema Nervoso/fisiopatologia , Condução Nervosa/fisiologia , Reprodutibilidade dos Testes , Ubiquitina Tiolesterase/metabolismo
6.
Exp Neurol ; 288: 75-84, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27851902

RESUMO

Type-1 Diabetes is generally treated with exogenous insulin administration. Despite treatment, a very common long term consequence of diabetes is the development of a disabling and painful peripheral neuropathy. The transplantation of pancreatic islets is an advanced alternative therapeutic approach, but its clinical application is still very limited, mainly because of the great number of islets required to complete the procedure and of their short-term survival. An intriguing method to improve the performance of pancreatic islets transplantation is the co-transplantation of Mesenchymal Stem Cells (MSCs), adult stem cells already known to support the survival of different cellular populations. In this proof-of-concept study, we demonstrated using an in vivo model of diabetes, the ability of allogenic MSCs to reduce the number of pancreatic islets necessary to achieve glycemic control in diabetic rats, and overall their positive effect on diabetic neuropathy, with the reduction of all the neuropathic signs showed after disease induction. The cutback of the pancreatic islet number required to control glycemia and the regression of the painful neuropathy make MSC co-transplantation a very promising tool to improve the clinical feasibility of pancreatic islet transplantation for diabetes treatment.


Assuntos
Neuropatias Diabéticas/cirurgia , Neuropatias Diabéticas/terapia , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/fisiologia , Análise de Variância , Animais , Antibióticos Antineoplásicos/farmacologia , Glicemia/metabolismo , Peso Corporal/efeitos dos fármacos , Neuropatias Diabéticas/sangue , Neuropatias Diabéticas/fisiopatologia , Modelos Animais de Doenças , Masculino , Fibras Nervosas Mielinizadas/patologia , Condução Nervosa/efeitos dos fármacos , Limiar da Dor/efeitos dos fármacos , Pâncreas/patologia , Ratos , Ratos Sprague-Dawley , Ratos Wistar , Estreptozocina/farmacologia , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo
7.
Neurology ; 84(23): 2368-71, 2015 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-25972491

RESUMO

OBJECTIVE: To assess the right-to-left and short-term variability of intraepidermal nerve fiber density (IENFD) at the distal site of the leg. METHODS: Patients with possible or probable small fiber neuropathy (SFN) and healthy volunteers (HVs) underwent skin biopsies at the right and left distal leg. A subgroup of participants underwent follow-up biopsies 20 days later. Biopsies were immunostained by polyclonal anti-protein gene product 9.5 antibodies, and IENFD was quantified in nonconsecutive sections following published guidelines by operators blinded to the participants' condition (diagnosis, side, and time of biopsy). Findings were referred to sex- and age-adjusted normative values. RESULTS: Forty patients and 17 HVs underwent bilateral skin biopsies; 15 patients and 8 HVs underwent follow-up skin biopsies. Sural nerve and dorsal sural nerve conduction studies were normal in all participants. Interside IENFD did not differ both in patients (median 2.45 IENF/mm ± 1.45 SD right; 2.2 IENF/mm ± 1.32 SD left) and HVs (median 6.3 IENF/mm ± 2.81 right; 6.2 IENF/mm ± 2.3 SD left). The right-to-left correlation coefficients were excellent (Pearson 0.95 in SFN and 0.97 in HVs). The analysis of IENFD at 20-day follow-up biopsy showed no difference between sides in both groups and yielded excellent correlation coefficients. CONCLUSIONS: The diagnosis of SFN can be reliably ascertained by unilateral skin biopsy at the distal site of the leg, and IENFD is not expected to vary within 3 weeks.


Assuntos
Biópsia/normas , Epiderme/patologia , Perna (Membro)/patologia , Fibras Nervosas/patologia , Doenças do Sistema Nervoso Periférico/diagnóstico , Adulto , Epiderme/inervação , Humanos , Masculino , Pessoa de Meia-Idade , Condução Nervosa , Reprodutibilidade dos Testes , Adulto Jovem
8.
Diabetes ; 64(3): 1035-45, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25277395

RESUMO

1-Deoxysphingolipids (1-deoxySLs) are atypical neurotoxic sphingolipids that are formed by the serine-palmitoyltransferase (SPT). Pathologically elevated 1-deoxySL concentrations cause hereditary sensory and autonomic neuropathy type 1 (HSAN1), an axonal neuropathy associated with several missense mutations in SPT. Oral L-serine supplementation suppressed the formation of 1-deoxySLs in patients with HSAN1 and preserved nerve function in an HSAN1 mouse model. Because 1-deoxySLs also are elevated in patients with type 2 diabetes mellitus, L-serine supplementation could also be a therapeutic option for diabetic neuropathy (DN). This was tested in diabetic STZ rats in a preventive and therapeutic treatment scheme. Diabetic rats showed significantly increased plasma 1-deoxySL concentrations, and L-serine supplementation lowered 1-deoxySL concentrations in both treatment schemes (P < 0.0001). L-serine had no significant effect on hyperglycemia, body weight, or food intake. Mechanical sensitivity was significantly improved in the preventive (P < 0.01) and therapeutic schemes (P < 0.001). Nerve conduction velocity (NCV) significantly improved in only the preventive group (P < 0.05). Overall NCV showed a highly significant (P = 5.2E-12) inverse correlation with plasma 1-deoxySL concentrations. In summary, our data support the hypothesis that 1-deoxySLs are involved in the pathology of DN and that an oral L-serine supplementation could be a novel therapeutic option for treating DN.


Assuntos
Neuropatias Diabéticas/sangue , Esfingosina/análogos & derivados , Animais , Peso Corporal/efeitos dos fármacos , Neuropatias Diabéticas/tratamento farmacológico , Ingestão de Alimentos/efeitos dos fármacos , Eletrofisiologia , Neuropatias Hereditárias Sensoriais e Autônomas/sangue , Neuropatias Hereditárias Sensoriais e Autônomas/tratamento farmacológico , Masculino , Ratos , Ratos Sprague-Dawley , Serina/uso terapêutico , Esfingosina/sangue
9.
Cell Metab ; 21(4): 571-83, 2015 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-25817536

RESUMO

Myelin is a membrane characterized by high lipid content to facilitate impulse propagation. Changes in myelin fatty acid (FA) composition have been associated with peripheral neuropathy, but the specific role of peripheral nerve FA synthesis in myelin formation and function is poorly understood. We have found that mice lacking sterol regulatory element-binding factor-1c (Srebf1c) have blunted peripheral nerve FA synthesis that results in development of peripheral neuropathy. Srebf1c-null mice develop Remak bundle alterations and hypermyelination of small-caliber fibers that impair nerve function. Peripheral nerves lacking Srebf1c show decreased FA synthesis and glycolytic flux, but increased FA catabolism and mitochondrial function. These metabolic alterations are the result of local accumulation of two endogenous peroxisome proliferator-activated receptor-α (Pparα) ligands, 1-palmitoyl-2-oleyl-sn-glycerol-3-phosphatidylcholine and 1-stearoyl-2-oleyl-sn-glycerol-3-phosphatidylcholine. Treatment with a Pparα antagonist rescues the neuropathy of Srebf1c-null mice. These findings reveal the importance of peripheral nerve FA synthesis to sustain myelin structure and function.


Assuntos
Ácidos Graxos/metabolismo , Bainha de Mielina/metabolismo , Neuroglia/metabolismo , Doenças do Sistema Nervoso Periférico/etiologia , Proteína de Ligação a Elemento Regulador de Esterol 1/deficiência , Análise de Variância , Animais , Western Blotting , Cromatografia Líquida de Alta Pressão , Metabolômica , Camundongos , Camundongos Knockout , Análise em Microsséries , Microscopia Eletrônica de Transmissão , Bainha de Mielina/ultraestrutura , Oxazóis/farmacologia , PPAR alfa/antagonistas & inibidores , Doenças do Sistema Nervoso Periférico/tratamento farmacológico , Doenças do Sistema Nervoso Periférico/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Tirosina/análogos & derivados , Tirosina/farmacologia
10.
PLoS One ; 9(9): e108403, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25268360

RESUMO

The pathogenetic role of vascular endothelial growth factor (VEGF) in long-term retinal and kidney complications of diabetes has been demonstrated. Conversely, little is known in diabetic neuropathy. We examined the modulation of VEGF pathway at mRNA and protein level on dorsal root ganglion (DRG) neurons and Schwann cells (SC) induced by hyperglycaemia. Moreover, we studied the effects of VEGF neutralization on hyperglycemic DRG neurons and streptozotocin-induced diabetic neuropathy. Our findings demonstrated that DRG neurons were not affected by the direct exposition to hyperglycaemia, whereas showed an impairment of neurite outgrowth ability when exposed to the medium of SC cultured in hyperglycaemia. This was mediated by an altered regulation of VEGF and FLT-1 receptors. Hyperglycaemia increased VEGF and FLT-1 mRNA without changing their intracellular protein levels in DRG neurons, decreased intracellular and secreted protein levels without changing mRNA level in SC, while reduced the expression of the soluble receptor sFLT-1 both in DRG neurons and SC. Bevacizumab, a molecule that inhibits VEGF activity preventing the interaction with its receptors, restored neurite outgrowth and normalized FLT-1 mRNA and protein levels in co-cultures. In diabetic rats, it both prevented and restored nerve conduction velocity and nociceptive thresholds. We demonstrated that hyperglycaemia early affected neurite outgrowth through the impairment of SC-derived VEGF/FLT-1 signaling and that the neutralization of SC-secreted VEGF was protective both in vitro and in vivo models of diabetic neuropathy.


Assuntos
Inibidores da Angiogênese/farmacologia , Anticorpos Monoclonais Humanizados/farmacologia , Diabetes Mellitus Experimental/tratamento farmacológico , Neuropatias Diabéticas/tratamento farmacológico , Hiperglicemia/tratamento farmacológico , Células de Schwann/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Animais , Bevacizumab , Técnicas de Cocultura , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/patologia , Neuropatias Diabéticas/induzido quimicamente , Neuropatias Diabéticas/genética , Neuropatias Diabéticas/patologia , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/metabolismo , Gânglios Espinais/patologia , Regulação da Expressão Gênica , Hiperglicemia/induzido quimicamente , Hiperglicemia/genética , Hiperglicemia/patologia , Masculino , Condução Nervosa/efeitos dos fármacos , Neuritos/efeitos dos fármacos , Neuritos/metabolismo , Neuritos/patologia , Nociceptividade/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Células de Schwann/metabolismo , Células de Schwann/patologia , Células Receptoras Sensoriais/efeitos dos fármacos , Células Receptoras Sensoriais/metabolismo , Células Receptoras Sensoriais/patologia , Transdução de Sinais , Estreptozocina , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismo
11.
J Endocrinol ; 221(1): 1-13, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24424289

RESUMO

Diabetic neuropathy is associated with neuropathic pain in about 50% of diabetic subjects. Clinical management of neuropathic pain is complex and so far unsatisfactory. In this study, we analyzed the effects of the testosterone metabolites, dihydrotestosterone (DHT), and 3α-diol, on nociceptive and allodynia thresholds and on molecular and functional parameters related to pain modulation in the dorsal horns of the spinal cord and in the dorsal root ganglia of rats rendered diabetic by streptozotocin injection. Furthermore, the levels of DHT and 3α-diol were analyzed in the spinal cord. Diabetes resulted in a significant decrease in DHT levels in the spinal cord that was reverted by DHT or 3α-diol treatments. In addition, 3α-diol treatment resulted in a significant increase in 3α-diol in the spinal cord compared with control values. Both steroids showed analgesic properties on diabetic neuropathic pain, affecting different pain parameters and possibly by different mechanisms of action. Indeed, DHT counteracted the effect of diabetes on the mechanical nociceptive threshold, pre- and post-synaptic components, glutamate release, astrocyte immunoreactivity, and expression of interleukin-1ß (IL1ß), while 3α-diol was effective on tactile allodynia threshold, glutamate release, astrocyte immunoreactivity and the expression of substance P, toll-like receptor 4, tumor necrosis factor-α, transforming growth factor ß-1, IL1ß, and translocator protein. These results indicate that testosterone metabolites are potential agents for the treatment of diabetic neuropathic pain.


Assuntos
Neuropatias Diabéticas/metabolismo , Dor Nociceptiva/metabolismo , Testosterona/metabolismo , Animais , Neuropatias Diabéticas/genética , Di-Hidrotestosterona/metabolismo , Humanos , Interleucina-4/genética , Interleucina-4/metabolismo , Masculino , Dor Nociceptiva/genética , Ratos , Ratos Sprague-Dawley , Medula Espinal/metabolismo
12.
J Agric Food Chem ; 60(23): 5859-65, 2012 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-22594308

RESUMO

Peripheral neuropathy is one of the most frequent and severe complications of diabetes. Hydroxytyrosol (HT), the major antioxidant polyphenolic compound of olive oil, has been investigated as a new potential treatment to counteract the progression of peripheral diabetic neuropathy in rats. An established model of streptozotocin-induced diabetes has been used. After confirmation of hyperglycemia, diabetic and nondiabetic animals were randomized to receive either a low dose or a high dose of HT, or the corresponding vehicle, for 6 weeks. At the end of the 6-week period of treatment, HT blunted plasma thiobarbituric acid-reactive substances increase (p < 0.05) and significantly reduced nerve conduction velocity (p < 0.05) and thermal nociception impairment in diabetic rats (p < 0.05). Sciatic nerve Na(+), K(+)-ATPase activity reduction was also abolished by HT (p < 0.05). The present study provides evidence of the therapeutic potential of the natural substance hydroxytyrosol in the early stage of diabetic neuropathy.


Assuntos
Diabetes Mellitus Experimental/tratamento farmacológico , Neuropatias Diabéticas/tratamento farmacológico , Álcool Feniletílico/análogos & derivados , Animais , Antioxidantes/farmacologia , Diabetes Mellitus Experimental/complicações , Neuropatias Diabéticas/complicações , Masculino , Azeite de Oliva , Álcool Feniletílico/farmacologia , Óleos de Plantas/farmacologia , Ratos , Ratos Sprague-Dawley , Nervo Isquiático/efeitos dos fármacos , Nervo Isquiático/metabolismo , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo
13.
Neurotox Res ; 18(2): 151-60, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19876698

RESUMO

Taxanes, including docetaxel (DOCE), are severely neurotoxic, causing disabling peripheral neuropathy. Co-treatment with neuroprotective agents has been proposed to prevent or reverse this. Besides its hemopoietic effects, erythropoietin (EPO) has neuroprotective and neurotrophic properties and when administered systemically it has a wide range of neuroprotective action in animal models of nervous system damage, including cisplatin-induced peripheral neurotoxicity. The present study investigated the effects of EPO on chemotherapy-induced peripheral neurotoxicity (CINP) by DOCE in vivo and whether it interfered with tumor growth or antitumor activity. Female Fischer rats bearing 13762 mammary carcinoma were randomly divided into four groups: untreated, treated with EPO, DOCE, or DOCE + EPO. DOCE was given once a week (5 mg/kg, i.v.) and EPO three times a week (50 microg/kg i.p.), for 4 weeks. Three other groups of rats without tumors were left untreated or given DOCE or DOCE + EPO. The rats were observed for 4 weeks after treatment. CINP and neuroprotection were evaluated by measuring nociception, electrophysiological, and biochemical parameters. EPO protected against CINP, and tumor growth in EPO-treated rats was the same as in controls. EPO significantly improved the thermal threshold, tail nerve conduction velocity, and intra-epidermal nerve fiber density. These benefits lasted through the follow-up period and EPO speeded-up spontaneous recovery after treatment withdrawal. EPO did not impair DOCE antitumor activity. Since CINP induced by DOCE reproduces the clinical utility of taxane in humans, the findings reported might provide a basis for investigating EPO as a neuroprotective agent in patients receiving therapy with DOCE.


Assuntos
Adenocarcinoma/tratamento farmacológico , Antineoplásicos/efeitos adversos , Eritropoetina/farmacologia , Fármacos Neuroprotetores/farmacologia , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Doenças do Sistema Nervoso Periférico/prevenção & controle , Taxoides/efeitos adversos , Animais , Docetaxel , Interações Medicamentosas , Eritropoetina/administração & dosagem , Feminino , Humanos , Fármacos Neuroprotetores/administração & dosagem , Ratos , Ratos Endogâmicos F344 , Ensaios Antitumorais Modelo de Xenoenxerto
14.
J Pain ; 10(9): 961-8, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19595641

RESUMO

UNLABELLED: Diabetic peripheral neuropathy (DPN) can induce loss of nociception as well as mechanical hyperalgesia and tactile allodynia. Pharmacological and clinical studies have shown that buprenorphine, a low-molecular-weight, lipophilic, opioid analgesic available as a transdermal matrix patch formulation, acts on neuropathic pain. To assess the role of buprenorphine in the treatment of DPN-associated neuropathic pain, we used a well-established experimental rat model of DPN in which buprenorphine at doses of 1.2 and 2.4 microg/kg/h was administered by implantable Alzet osmotic pumps for 3 weeks. After 6 weeks of diabetes, nerve conduction velocity (NCV) and behavioural responses to noxious mechanical and thermal stimuli were assessed. Diabetic rats showed an impairment of NCV, mechanical allodynia, and thermal hypoalgesia. Both doses of buprenorphine significantly reversed the diabetes-induced allodynia up to day 7 of treatment. Buprenorphine did not alter either thermal perception or NCV. PERSPECTIVE: This study evaluated, through a multimodal approach, the analgesic effect of buprenorphine in an experimental rat model of painful DPN. Our results suggest a possible role for buprenorphine in the management of DPN-associated neuropathic pain.


Assuntos
Buprenorfina/farmacologia , Neuropatias Diabéticas/tratamento farmacológico , Sistema Nervoso Periférico/efeitos dos fármacos , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Analgésicos Opioides/administração & dosagem , Animais , Buprenorfina/administração & dosagem , Diabetes Mellitus Experimental/complicações , Neuropatias Diabéticas/metabolismo , Neuropatias Diabéticas/fisiopatologia , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Esquema de Medicação , Eletrodiagnóstico , Hiperalgesia/tratamento farmacológico , Hiperalgesia/metabolismo , Hiperalgesia/fisiopatologia , Bombas de Infusão Implantáveis , Masculino , Condução Nervosa/efeitos dos fármacos , Condução Nervosa/fisiologia , Sistema Nervoso Periférico/metabolismo , Sistema Nervoso Periférico/fisiopatologia , Ratos , Ratos Sprague-Dawley , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA