Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 417
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Hum Mol Genet ; 28(15): 2477-2485, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31152171

RESUMO

Many workers are daily exposed to occupational agents like gases/fumes, mineral dust or biological dust, which could induce adverse health effects. Epigenetic mechanisms, such as DNA methylation, have been suggested to play a role. We therefore aimed to identify differentially methylated regions (DMRs) upon occupational exposures in never-smokers and investigated if these DMRs associated with gene expression levels. To determine the effects of occupational exposures independent of smoking, 903 never-smokers of the LifeLines cohort study were included. We performed three genome-wide methylation analyses (Illumina 450 K), one per occupational exposure being gases/fumes, mineral dust and biological dust, using robust linear regression adjusted for appropriate confounders. DMRs were identified using comb-p in Python. Results were validated in the Rotterdam Study (233 never-smokers) and methylation-expression associations were assessed using Biobank-based Integrative Omics Study data (n = 2802). Of the total 21 significant DMRs, 14 DMRs were associated with gases/fumes and 7 with mineral dust. Three of these DMRs were associated with both exposures (RPLP1 and LINC02169 (2×)) and 11 DMRs were located within transcript start sites of gene expression regulating genes. We replicated two DMRs with gases/fumes (VTRNA2-1 and GNAS) and one with mineral dust (CCDC144NL). In addition, nine gases/fumes DMRs and six mineral dust DMRs significantly associated with gene expression levels. Our data suggest that occupational exposures may induce differential methylation of gene expression regulating genes and thereby may induce adverse health effects. Given the millions of workers that are exposed daily to occupational exposures, further studies on this epigenetic mechanism and health outcomes are warranted.


Assuntos
Metilação de DNA , Poeira , Gases/efeitos adversos , Regulação da Expressão Gênica , Exposição Ocupacional/efeitos adversos , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Sangue , Feminino , Estudo de Associação Genômica Ampla , Humanos , Leucócitos , Masculino , Pessoa de Meia-Idade , Análise de Sequência de RNA , Adulto Jovem
2.
Hum Mol Genet ; 27(2): 396-405, 2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-29092026

RESUMO

Chronic obstructive pulmonary disease (COPD) is among the major health burdens in adults. While cigarette smoking is the leading risk factor, a growing number of genetic variations have been discovered to influence disease susceptibility. Epigenetic modifications may mediate the response of the genome to smoking and regulate gene expression. Chromosome 19q13.2 region is associated with both smoking and COPD, yet its functional role is unclear. Our study aimed to determine whether rs7937 (RAB4B, EGLN2), a top genetic variant in 19q13.2 region identified in genome-wide association studies of COPD, is associated with differential DNA methylation in blood (N = 1490) and gene expression in blood (N = 721) and lungs (N = 1087). We combined genetic and epigenetic data from the Rotterdam Study (RS) to perform the epigenome-wide association analysis of rs7937. Further, we used genetic and transcriptomic data from blood (RS) and from lung tissue (Lung expression quantitative trait loci mapping study), to perform the transcriptome-wide association study of rs7937. Rs7937 was significantly (FDR < 0.05) and consistently associated with differential DNA methylation in blood at 4 CpG sites in cis, independent of smoking. One methylation site (cg11298343-EGLN2) was also associated with COPD (P = 0.001). Additionally, rs7937 was associated with gene expression levels in blood in cis (EGLN2), 42% mediated through cg11298343, and in lung tissue, in cis and trans (NUMBL, EGLN2, DNMT3A, LOC101929709 and PAK2). Our results suggest that changes of DNA methylation and gene expression may be intermediate steps between genetic variants and COPD, but further causal studies in lung tissue should confirm this hypothesis.


Assuntos
Cromossomos Humanos Par 19 , Metilação de DNA , Doença Pulmonar Obstrutiva Crônica/genética , Adulto , Idoso , Mapeamento Cromossômico , Epigênese Genética , Feminino , Expressão Gênica , Predisposição Genética para Doença , Variação Genética , Estudo de Associação Genômica Ampla , Humanos , Prolina Dioxigenases do Fator Induzível por Hipóxia/genética , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Doença Pulmonar Obstrutiva Crônica/metabolismo , Locos de Características Quantitativas , Fumar/genética , Proteínas rab4 de Ligação ao GTP/genética
3.
Thorax ; 75(2): 180-183, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31937552

RESUMO

Translation of genomic alterations to protein changes in chronic obstructive pulmonary disease (COPD) is largely unexplored. Using integrated proteomic and RNA sequencing analysis of COPD and control lung tissues, we identified a protein signature in COPD characterised by extracellular matrix changes and a potential regulatory role for SUMO2. Furthermore, we identified 61 differentially expressed novel, non-reference, peptides in COPD compared with control lungs. This included two peptides encoding for a new splice variant of SORBS1, of which the transcript usage was higher in COPD compared with control lungs. These explorative findings and integrative proteogenomic approach open new avenues to further unravel the pathology of COPD.


Assuntos
Regulação da Expressão Gênica/genética , Proteínas dos Microfilamentos/genética , Isoformas de Proteínas/genética , Proteogenômica/métodos , Doença Pulmonar Obstrutiva Crônica/genética , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Idoso , Estudos de Casos e Controles , Progressão da Doença , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Valores de Referência , Medição de Risco , Índice de Gravidade de Doença
4.
Eur Respir J ; 53(4)2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30846474

RESUMO

The aim was to investigate whether microRNA (miRNA) expression is modulated by inhaled corticosteroid (ICS) treatmentWe performed genome-wide miRNA analysis on bronchial biopsies of 69 moderate/severe chronic obstructive pulmonary disease (COPD) patients at baseline and after 6- and 30-month treatment with the ICS fluticasone propionate or placebo. The effect of ICS on miRNA expression was validated in differentiated primary bronchial epithelial cultures, and functional studies were conducted in BEAS-2B cells. MiRNAs affected by ICS and their predicted targets were compared to an independent miRNA dataset of bronchial brushings from COPD patients and healthy controls.Treatment with ICS for both 6 and 30 months significantly altered the expression of four miRNAs, including miR-320d, which was increased during ICS treatment compared with placebo. The ICS-induced increase of miR-320d was confirmed in primary airway epithelial cells. MiR-320d negatively correlated targets were enriched for pro-inflammatory genes and were increased in the bronchial brushes of patients with lower lung function in the independent dataset. Overexpression of miR-320d in BEAS-2B cells dampened cigarette smoke extract-induced pro-inflammatory activity via inhibition of nuclear factor-κB.Collectively, we identified miR-320d as a novel mediator of ICS, regulating the pro-inflammatory response of the airway epithelium.


Assuntos
Corticosteroides/farmacologia , Fluticasona/farmacologia , MicroRNAs/biossíntese , MicroRNAs/efeitos dos fármacos , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Doença Pulmonar Obstrutiva Crônica/genética , Transcriptoma/efeitos dos fármacos , Corticosteroides/administração & dosagem , Idoso , Estudos Transversais , Feminino , Fluticasona/administração & dosagem , Estudo de Associação Genômica Ampla , Humanos , Masculino , Pessoa de Meia-Idade
5.
BMC Pulm Med ; 19(1): 58, 2019 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-30845926

RESUMO

BACKGROUND: Airflow obstruction is a hallmark of chronic obstructive pulmonary disease (COPD), and is defined as either the ratio between forced expiratory volume in one second and forced vital capacity (FEV1/FVC) < 70% or < lower limit of normal (LLN). This study aimed to assess the overlap between genome-wide association studies (GWAS) on airflow obstruction using these two definitions in the same population stratified by smoking. METHODS: GWASes were performed in the LifeLines Cohort Study for both airflow obstruction definitions in never-smokers (NS = 5071) and ever-smokers (ES = 4855). The FEV1/FVC < 70% models were adjusted for sex, age, and height; FEV1/FVC < LLN models were not adjusted. Ever-smokers models were additionally adjusted for pack-years and current-smoking. The overlap in significantly associated SNPs between the two definitions and never/ever-smokers was assessed using several p-value thresholds. To quantify the agreement, the Pearson correlation coefficient was calculated between the p-values and ORs. Replication was performed in the Vlagtwedde-Vlaardingen study (NS = 432, ES = 823). The overlapping SNPs with p < 10- 4 were validated in the Vlagtwedde-Vlaardingen and Rotterdam Study cohorts (NS = 1966, ES = 3134) and analysed for expression quantitative trait loci (eQTL) in lung tissue (n = 1087). RESULTS: In the LifeLines cohort, 96% and 93% of the never- and ever-smokers were classified concordantly based on the two definitions. 26 and 29% of the investigated SNPs were overlapping at p < 0.05 in never- and ever-smokers, respectively. At p < 10- 4 the overlap was 4% and 6% respectively, which could be change findings as shown by simulation studies. The effect estimates of the SNPs of the two definitions correlated strongly, but the p-values showed more variation and correlated only moderately. Similar observations were made in the Vlagtwedde-Vlaardingen study. Two overlapping SNPs in never-smokers (NFYC and FABP7) had the same direction of effect in the validation cohorts and the NFYC SNP was an eQTL for NFYC-AS1. NFYC is a transcription factor that binds to several known COPD genes, and FABP7 may be involved in abnormal pulmonary development. CONCLUSIONS: The definition of airflow obstruction and the population under study may be important determinants of which SNPs are associated with airflow obstruction. The genes FABP7 and NFYC(-AS1) could play a role in airflow obstruction in never-smokers specifically.


Assuntos
Fator de Ligação a CCAAT/genética , Proteína 7 de Ligação a Ácidos Graxos/genética , Estudo de Associação Genômica Ampla , Doença Pulmonar Obstrutiva Crônica/genética , Fumar/genética , Proteínas Supressoras de Tumor/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Coortes , Feminino , Volume Expiratório Forçado , Homologia de Genes/genética , Predisposição Genética para Doença , Humanos , Modelos Lineares , Modelos Logísticos , Pulmão/fisiopatologia , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas/genética , Fumar/efeitos adversos , Espirometria , Capacidade Vital , Adulto Jovem
6.
J Allergy Clin Immunol ; 141(3): 1105-1114, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28739286

RESUMO

BACKGROUND: Circulating levels of the chitinase-like protein YKL-40 are influenced by genetic variation in its encoding gene (chitinase 3-like 1 [CHI3L1]) and are increased in patients with several diseases, including asthma. Epigenetic regulation of circulating YKL-40 early in life is unknown. OBJECTIVE: We sought to determine (1) whether methylation levels at CHI3L1 CpG sites mediate the association of CHI3L1 single nucleotide polymorphisms (SNPs) with YKL-40 levels in the blood and (2) whether these biomarkers (CHI3L1 SNPs, methylation profiles, and YKL-40 levels) are associated with asthma in early childhood. METHODS: We used data from up to 2405 participants from the Spanish Infancia y Medio Ambiente; the Swedish Barn/Children, Allergy, Milieu, Stockholm, Epidemiological survey; and the Dutch Prevention and Incidence of Asthma and Mite Allergy birth cohorts. Associations between 68 CHI3L1 SNPs, methylation levels at 14 CHI3L1 CpG sites in whole-blood DNA, and circulating YKL-40 levels at 4 years of age were tested by using correlation analysis, multivariable regression, and mediation analysis. Each of these biomarkers was also tested for association with asthma at 4 years of age by using multivariable logistic regression. RESULTS: YKL-40 levels were significantly associated with 7 SNPs and with methylation at 5 CpG sites. Consistent associations between these 7 SNPs (particularly rs10399931 and rs4950928) and 5 CpG sites were observed. Alleles linked to lower YKL-40 levels were associated with higher methylation levels. Participants with high YKL-40 levels (defined as the highest YKL-40 tertile) had increased odds for asthma compared with subjects with low YKL-40 levels (meta-analyzed adjusted odds ratio, 1.90 [95% CI, 1.08-3.36]). In contrast, neither SNPs nor methylation levels at CpG sites in CHI3L1 were associated with asthma. CONCLUSIONS: The effects of CHI3L1 genetic variation on circulating YKL-40 levels are partly mediated by methylation profiles. In our study YKL-40 levels, but not CHI3L1 SNPs or methylation levels, were associated with childhood asthma.


Assuntos
Asma , Proteína 1 Semelhante à Quitinase-3 , Metilação de DNA , Epigênese Genética , Predisposição Genética para Doença , Polimorfismo de Nucleotídeo Único , Asma/sangue , Asma/genética , Biomarcadores/sangue , Pré-Escolar , Proteína 1 Semelhante à Quitinase-3/sangue , Proteína 1 Semelhante à Quitinase-3/genética , Feminino , Estudo de Associação Genômica Ampla , Humanos , Masculino
7.
J Cell Mol Med ; 22(4): 2272-2282, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29411515

RESUMO

Inflammation and ageing are intertwined in chronic obstructive pulmonary disease (COPD). The histone deacetylase SIRT1 and the related activation of FoxO3 protect from ageing and regulate inflammation. The role of SIRT1/FoxO3 in COPD is largely unknown. This study evaluated whether cigarette smoke, by modulating the SIRT1/FoxO3 axis, affects airway epithelial pro-inflammatory responses. Human bronchial epithelial cells (16HBE) and primary bronchial epithelial cells (PBECs) from COPD patients and controls were treated with/without cigarette smoke extract (CSE), Sirtinol or FoxO3 siRNA. SIRT1, FoxO3 and NF-κB nuclear accumulation, SIRT1 deacetylase activity, IL-8 and CCL20 expression/release and the release of 12 cytokines, neutrophil and lymphocyte chemotaxis were assessed. In PBECs, the constitutive FoxO3 expression was lower in patients with COPD than in controls. Furthermore, CSE reduced FoxO3 expression only in PBECs from controls. In 16HBE, CSE decreased SIRT1 activity and nuclear expression, enhanced NF-κB binding to the IL-8 gene promoter thus increasing IL-8 expression, decreased CCL20 expression, increased the neutrophil chemotaxis and decreased lymphocyte chemotaxis. Similarly, SIRT1 inhibition reduced FoxO3 expression and increased nuclear NF-κB. FoxO3 siRNA treatment increased IL-8 and decreased CCL20 expression in 16HBE. In conclusion, CSE impairs the function of SIRT1/FoxO3 axis in bronchial epithelium, dysregulating NF-κB activity and inducing pro-inflammatory responses.


Assuntos
Proteína Forkhead Box O3/genética , Inflamação/genética , Doença Pulmonar Obstrutiva Crônica/metabolismo , Sirtuína 1/genética , Brônquios/efeitos dos fármacos , Brônquios/metabolismo , Brônquios/patologia , Quimiocina CCL20/genética , Fumar Cigarros/efeitos adversos , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Imunidade Celular/efeitos dos fármacos , Inflamação/induzido quimicamente , Inflamação/patologia , Interleucina-8/genética , NF-kappa B/genética , Doença Pulmonar Obstrutiva Crônica/genética , Doença Pulmonar Obstrutiva Crônica/patologia , Mucosa Respiratória/efeitos dos fármacos , Mucosa Respiratória/metabolismo , Mucosa Respiratória/patologia , Nicotiana/efeitos adversos , Nicotiana/química
9.
Eur Respir J ; 52(3)2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30072506

RESUMO

Chronic mucus hypersecretion (CMH) is a common feature in chronic obstructive pulmonary disease (COPD) and is associated with worse prognosis and quality of life. This study aimed to identify microRNA (miRNA)-mRNA regulatory networks underlying CMH.The expression profiles of miRNA and mRNA in bronchial biopsies from 63 COPD patients were associated with CMH using linear regression. Potential mRNA targets of each CMH-associated miRNA were identified using Pearson correlations. Gene set enrichment analysis (GSEA) and STRING (search tool for the retrieval of interacting genes/proteins) analysis were used to identify key genes and pathways.20 miRNAs and 539 mRNAs were differentially expressed with CMH in COPD. The expression of 10 miRNAs was significantly correlated with the expression of one or more mRNAs. Of these, miR-134-5p, miR-146a-5p and the let-7 family had the highest representation of CMH-associated mRNAs among their negatively correlated predicted targets. KRAS and EDN1 were identified as key regulators of CMH and were negatively correlated predicted targets of miR-134-5p and let-7a-5p, let-7d-5p, and let-7f-5p, respectively. GSEA suggested involvement of MUC5AC-related genes and several other relevant gene sets in CMH. The lower expression of miR-134-5p was confirmed in primary airway fibroblasts from COPD patients with CMH.We identified miR-134-5p, miR-146a-5p and let-7 family, along with their potential target genes including KRAS and EDN1, as potential key miRNA-mRNA networks regulating CMH in COPD.


Assuntos
MicroRNAs/genética , Doença Pulmonar Obstrutiva Crônica/genética , Mucosa Respiratória/metabolismo , Idoso , Brônquios/patologia , Feminino , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Modelos Lineares , Masculino , Pessoa de Meia-Idade , Proteínas Proto-Oncogênicas p21(ras)/genética , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Qualidade de Vida , RNA Mensageiro/genética
10.
Eur Respir J ; 51(3)2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29519908

RESUMO

Interleukin-1 receptor-like 1 (IL1RL1) is an important asthma gene. (Epi)genetic regulation of IL1RL1 protein expression has not been established. We assessed the association between IL1RL1 single nucleotide polymorphisms (SNPs), IL1RL1 methylation and serum IL1RL1-a protein levels, and aimed to identify causal pathways in asthma.Associations of IL1RL1 SNPs with asthma were determined in the Dutch Asthma Genome-wide Association Study cohort and three European birth cohorts, BAMSE (Children/Barn, Allergy, Milieu, Stockholm, an Epidemiological survey), INMA (Infancia y Medio Ambiente) and PIAMA (Prevention and Incidence of Asthma and Mite Allergy), participating in the Mechanisms of the Development of Allergy study. We performed blood DNA IL1RL1 methylation quantitative trait locus (QTL) analysis (n=496) and (epi)genome-wide protein QTL analysis on serum IL1RL1-a levels (n=1462). We investigated the association of IL1RL1 CpG methylation with asthma (n=632) and IL1RL1-a levels (n=548), with subsequent causal inference testing. Finally, we determined the association of IL1RL1-a levels with asthma and its clinical characteristics (n=1101).IL1RL1 asthma-risk SNPs strongly associated with IL1RL1 methylation (rs1420101; p=3.7×10-16) and serum IL1RL1-a levels (p=2.8×10-56). IL1RL1 methylation was not associated with asthma or IL1RL1-a levels. IL1RL1-a levels negatively correlated with blood eosinophil counts, whereas there was no association between IL1RL1-a levels and asthma.In conclusion, asthma-associated IL1RL1 SNPs strongly regulate IL1RL1 methylation and serum IL1RL1-a levels, yet neither these IL1RL1-methylation CpG sites nor IL1RL1-a levels are associated with asthma.


Assuntos
Asma/genética , Metilação de DNA , Regulação da Expressão Gênica , Proteína 1 Semelhante a Receptor de Interleucina-1/genética , Adolescente , Criança , Pré-Escolar , Estudos de Coortes , Ilhas de CpG , Epigênese Genética , Feminino , Perfilação da Expressão Gênica , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Genótipo , Humanos , Masculino , Fenótipo , Polimorfismo de Nucleotídeo Único
11.
Respir Res ; 19(1): 256, 2018 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-30563522

RESUMO

We performed a post-hoc analysis of the OLiVIA-study investigating whether current and ex-smoking asthmatics with small airways dysfunction (SAD) show a better response in airway hyperresponsiveness (AHR) to small particle adenosine after treatment with extrafine compared to non-extrafine particle inhaled corticosteroids (ICS), and to investigate which clinical parameters predict a favorable response to both treatments. We show that smoking and ex-smoking asthmatics with and without SAD have a similar treatment response with either extrafine or non-extrafine particle ICS. We also found that lower blood neutrophils are associated with a smaller ICS-response in smokers and ex-smokers with asthma, independent from the level of blood eosinophils.


Assuntos
Corticosteroides/administração & dosagem , Antiasmáticos/administração & dosagem , Asma/tratamento farmacológico , Ex-Fumantes , Tamanho da Partícula , Fumantes , Fumar/tratamento farmacológico , Administração por Inalação , Adulto , Remodelação das Vias Aéreas/efeitos dos fármacos , Remodelação das Vias Aéreas/fisiologia , Asma/sangue , Asma/diagnóstico , Eosinófilos/efeitos dos fármacos , Eosinófilos/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Fumar/sangue , Resultado do Tratamento
12.
Occup Environ Med ; 75(6): 427-435, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29459480

RESUMO

OBJECTIVES: Occupational pesticide exposure is associated with a wide range of diseases, including lung diseases, but it is largely unknown how pesticides influence airway disease pathogenesis. A potential mechanism might be through epigenetic mechanisms, like DNA methylation. Therefore, we assessed associations between occupational exposure to pesticides and genome-wide DNA methylation sites. METHODS: 1561 subjects of LifeLines were included with either no (n=1392), low (n=108) or high (n=61) exposure to any type of pesticides (estimated based on current or last held job). Blood DNA methylation levels were measured using Illumina 450K arrays. Associations between pesticide exposure and 420 938 methylation sites (CpGs) were assessed using robust linear regression adjusted for appropriate confounders. In addition, we performed genome-wide stratified and interaction analyses by gender, smoking and airway obstruction status, and assessed associations between gene expression and methylation for genome-wide significant CpGs (n=2802). RESULTS: In total for all analyses, high pesticide exposure was genome-wide significantly (false discovery rate P<0.05) associated with differential DNA methylation of 31 CpGs annotated to 29 genes. Twenty of these CpGs were found in subjects with airway obstruction. Several of the identified genes, for example, RYR1, ALLC, PTPRN2, LRRC3B, PAX2 and VTRNA2-1, are genes previously linked to either pesticide exposure or lung-related diseases. Seven out of 31 CpGs were associated with gene expression levels. CONCLUSIONS: We show for the first time that occupational exposure to pesticides is genome-wide associated with differential DNA methylation. Further research should reveal whether this differential methylation plays a role in the airway disease pathogenesis induced by pesticides.


Assuntos
Ilhas de CpG , Metilação de DNA , Exposição Ocupacional/efeitos adversos , Praguicidas/toxicidade , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Epigênese Genética , Feminino , Expressão Gênica , Estudo de Associação Genômica Ampla , Humanos , Masculino , Pessoa de Meia-Idade , Países Baixos , Adulto Jovem
13.
Respirology ; 23(11): 1023-1031, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29696728

RESUMO

BACKGROUND AND OBJECTIVE: Inflammation is present to a variable degree and composition in patients with COPD. This study investigates associations between both eosinophils and neutrophils in blood, sputum, airway wall biopsies and bronchoalveolar lavage (BAL) and their potential use as biomarkers for clinical response to inhaled corticosteroids (ICS). METHODS: In total, 114 steroid-naïve COPD patients of the Groningen Leiden Universities Corticosteroids in Obstructive Lung Disease (GLUCOLD) study using ICS or placebo during 30-month follow-up were included. Cell counts in blood, sputum, biopsies and BAL were evaluated at baseline. In addition, at baseline, 6 and 30 months, forced expiratory flow in 1 s (FEV1 ), residual volume/total lung capacity (hyperinflation) and Clinical COPD Questionnaire were evaluated. RESULTS: Cross-sectional analyses at baseline showed that higher blood eosinophils were significantly associated with higher eosinophil counts in sputum, biopsies and BAL. However, blood neutrophils did not significantly correlate with neutrophil counts in the other compartments. Baseline eosinophils and neutrophils, in whichever compartment measured, did not predict longitudinal FEV1 changes. Higher baseline biopsy eosinophils were associated with an increase in symptoms during 6- and 30-month ICS treatment. In addition, higher biopsy neutrophils were associated with a more marked reduction in hyperinflation during 6-month ICS treatment compared with placebo. CONCLUSION: Our findings indicate that blood eosinophils reflect eosinophils in other compartments, in contrast to neutrophils, in ICS-naïve COPD patients. Both baseline eosinophils and neutrophils do not predict ICS-induced lung function changes over a period of 6-30 months. The associations of biopsy eosinophils with worsening respiratory symptoms and biopsy neutrophils with improvement in hyperinflation during ICS treatment deserve further investigation.


Assuntos
Eosinófilos , Glucocorticoides , Contagem de Leucócitos/métodos , Pulmão , Neutrófilos , Doença Pulmonar Obstrutiva Crônica , Idoso , Estudos Transversais , Feminino , Glucocorticoides/administração & dosagem , Glucocorticoides/efeitos adversos , Humanos , Pulmão/efeitos dos fármacos , Pulmão/fisiopatologia , Masculino , Pessoa de Meia-Idade , Países Baixos , Valor Preditivo dos Testes , Doença Pulmonar Obstrutiva Crônica/sangue , Doença Pulmonar Obstrutiva Crônica/diagnóstico , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Testes de Função Respiratória/métodos , Resultado do Tratamento
14.
J Allergy Clin Immunol ; 139(2): 533-540, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27612410

RESUMO

BACKGROUND: Although a striking proportion (25% to 45%) of patients with chronic obstructive pulmonary disease are never-smokers, most genetic susceptibility studies have not focused on this group exclusively. OBJECTIVE: The aim of this study was to identify common genetic variants associated with FEV1 and its ratio to forced vital capacity (FVC) in never-smokers. METHODS: Genome-wide association studies were performed in 5070 never-smokers of the identification cohort LifeLines, and results (P < 10-5) were verified by using a meta-analysis of the Vlagtwedde-Vlaardingen study and the Rotterdam Study I-III (total n = 1966). Furthermore, we aimed to assess the effects of the replicated variants in more detail by performing genetic risk score, expression quantitative trait loci, and variant*ever-smoking interaction analyses. RESULTS: We identified associations between the FEV1/FVC ratio and 5 common genetic variants in the identification cohort, and 2 of these associations were replicated. The 2 variants annotated to the genes hedgehog interacting protein (HHIP) and family with sequence similarity 13 member A (FAM13A) were shown to have an additive effect on FEV1/FVC levels in the genetic risk score analysis; were associated with gene expression of HHIP and FAM13A in lung tissue, respectively; and were genome-wide significant in a meta-analysis including both identification and 4 verification cohorts (P < 2.19 × 10-7). Finally, we did not identify significant interactions between the variants and ever smoking. Results of the FEV1 identification analysis were not replicated. CONCLUSION: The genes HHIP and FAM13A confer a risk for airway obstruction in general that is not driven exclusively by cigarette smoking, which is the main risk factor for chronic obstructive pulmonary disease.


Assuntos
Proteínas de Transporte/genética , Proteínas Ativadoras de GTPase/genética , Pulmão/fisiologia , Glicoproteínas de Membrana/genética , Doença Pulmonar Obstrutiva Crônica/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Coortes , Feminino , Volume Expiratório Forçado , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas/genética , Risco , Fumar/efeitos adversos , Espirometria , Capacidade Vital , Adulto Jovem
15.
J Allergy Clin Immunol ; 140(3): 771-781, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28188724

RESUMO

BACKGROUND: The relationship between allergy and autoimmune disorders is complex and poorly understood. OBJECTIVE: We sought to investigate commonalities in genetic loci and pathways between allergy and autoimmune diseases to elucidate shared disease mechanisms. METHODS: We meta-analyzed 2 genome-wide association studies on self-reported allergy and sensitization comprising a total of 62,330 subjects. These results were used to calculate enrichment for single nucleotide polymorphisms (SNPs) previously associated with autoimmune diseases. Furthermore, we probed for enrichment within genetic pathways and of transcription factor binding sites and characterized commonalities in variant burden on tissue-specific regulatory sites by calculating the enrichment of allergy SNPs falling in gene regulatory regions in various cells using Encode Roadmap DNase-hypersensitive site data. Finally, we compared the allergy data with those of all known diseases. RESULTS: Among 290 loci previously associated with 16 autoimmune diseases, we found a significant enrichment of loci also associated with allergy (P = 1.4e-17) encompassing 29 loci at a false discovery rate of less than 0.05. Such enrichment seemed to be a general characteristic for autoimmune diseases. Among the common loci, 48% had the same direction of effect for allergy and autoimmune diseases. Additionally, we observed an enrichment of allergy SNPs falling within immune pathways and regions of chromatin accessible in immune cells that was also represented in patients with autoimmune diseases but not those with other diseases. CONCLUSION: We identified shared susceptibility loci and commonalities in pathways between allergy and autoimmune diseases, suggesting shared disease mechanisms. Further studies of these shared genetic mechanisms might help in understanding the complex relationship between these diseases, including the parallel increase in disease prevalence.


Assuntos
Doenças Autoimunes/genética , Hipersensibilidade/genética , Estudo de Associação Genômica Ampla , Humanos , Polimorfismo de Nucleotídeo Único
16.
J Allergy Clin Immunol ; 139(2): 388-399, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28183433

RESUMO

Asthma, rhinitis, and eczema are complex diseases with multiple genetic and environmental factors interlinked through IgE-associated and non-IgE-associated mechanisms. Mechanisms of the Development of ALLergy (MeDALL; EU FP7-CP-IP; project no: 261357; 2010-2015) studied the complex links of allergic diseases at the clinical and mechanistic levels by linking epidemiologic, clinical, and mechanistic research, including in vivo and in vitro models. MeDALL integrated 14 European birth cohorts, including 44,010 participants and 160 cohort follow-ups between pregnancy and age 20 years. Thirteen thousand children were prospectively followed after puberty by using a newly standardized MeDALL Core Questionnaire. A microarray developed for allergen molecules with increased IgE sensitivity was obtained for 3,292 children. Estimates of air pollution exposure from previous studies were available for 10,000 children. Omics data included those from historical genome-wide association studies (23,000 children) and DNA methylation (2,173), targeted multiplex biomarker (1,427), and transcriptomic (723) studies. Using classical epidemiology and machine-learning methods in 16,147 children aged 4 years and 11,080 children aged 8 years, MeDALL showed the multimorbidity of eczema, rhinitis, and asthma and estimated that only 38% of multimorbidity was attributable to IgE sensitization. MeDALL has proposed a new vision of multimorbidity independent of IgE sensitization, and has shown that monosensitization and polysensitization represent 2 distinct phenotypes. The translational component of MeDALL is shown by the identification of a novel allergic phenotype characterized by polysensitization and multimorbidity, which is associated with the frequency, persistence, and severity of allergic symptoms. The results of MeDALL will help integrate personalized, predictive, preventative, and participatory approaches in allergic diseases.


Assuntos
Alérgenos/imunologia , Hipersensibilidade/imunologia , Adolescente , Animais , Criança , Estudos de Coortes , Comorbidade , Europa (Continente)/epidemiologia , Feminino , Perfilação da Expressão Gênica , Estudo de Associação Genômica Ampla , Humanos , Hipersensibilidade/epidemiologia , Hipersensibilidade/genética , Imunização , Imunoglobulina E/metabolismo , Fenótipo , Pesquisa Translacional Biomédica , Adulto Jovem
17.
Am J Respir Cell Mol Biol ; 57(4): 411-418, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28459279

RESUMO

Chronic obstructive pulmonary disease is the third leading cause of death worldwide. Gene expression profiling across multiple regions of the same lung identified genes significantly related to emphysema. We sought to determine whether the lung and epithelial expression of 127 emphysema-related genes was also related to lung function in independent cohorts, and whether any of these genes could be used as biomarkers in the peripheral blood of patients with chronic obstructive pulmonary disease. To that end, we examined whether the expression levels of these genes were under genetic control in lung tissue (n = 1,111). We then determined whether the mRNA levels of these genes in lung tissue (n = 727), small airway epithelial cells (n = 238), and peripheral blood (n = 620) were significantly related to lung function measurements. The expression of 63 of the 127 genes (50%) was under genetic control in lung tissue. The lung and epithelial mRNA expression of a subset of the emphysema-associated genes, including ASRGL1, LPHN2, and EDNRB, was strongly associated with lung function. In peripheral blood, the expression of 40 genes was significantly associated with lung function. Twenty-nine of these genes (73%) were also associated with lung function in lung tissue, but with the opposite direction of effect for 24 of the 29 genes, including those involved in hypoxia and B cell-related responses. The integrative genomics approach uncovered a significant overlap of emphysema genes associations with lung function between lung and blood with opposite directions between the two. These results support the use of peripheral blood to detect disease biomarkers.


Assuntos
Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Genômica , Pulmão/metabolismo , Enfisema Pulmonar/metabolismo , RNA Mensageiro/biossíntese , Linfócitos B/metabolismo , Linfócitos B/patologia , Biomarcadores/metabolismo , Hipóxia Celular , Feminino , Humanos , Pulmão/patologia , Masculino , Enfisema Pulmonar/genética , Enfisema Pulmonar/patologia , RNA Mensageiro/genética
18.
BMC Genomics ; 18(1): 25, 2017 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-28056824

RESUMO

BACKGROUND: DNA methylation has been found to associate with disease, aging and environmental exposure, but it is unknown how genome, environment and disease influence DNA methylation dynamics in childhood. RESULTS: By analysing 538 paired DNA blood samples from children at birth and at 4-5 years old and 726 paired samples from children at 4 and 8 years old from four European birth cohorts using the Illumina Infinium Human Methylation 450 k chip, we have identified 14,150 consistent age-differential methylation sites (a-DMSs) at epigenome-wide significance of p < 1.14 × 10-7. Genes with an increase in age-differential methylation were enriched in pathways related to 'development', and were more often located in bivalent transcription start site (TSS) regions, which can silence or activate expression of developmental genes. Genes with a decrease in age-differential methylation were involved in cell signalling, and enriched on H3K27ac, which can predict developmental state. Maternal smoking tended to decrease methylation levels at the identified da-DMSs. We also found 101 a-DMSs (0.71%) that were regulated by genetic variants using cis-differential Methylation Quantitative Trait Locus (cis-dMeQTL) mapping. Moreover, a-DMS-associated genes during early development were significantly more likely to be linked with disease. CONCLUSION: Our study provides new insights into the dynamic epigenetic landscape of the first 8 years of life.


Assuntos
Desenvolvimento Infantil , Metilação de DNA , Epigênese Genética , Epigenômica , Criança , Pré-Escolar , Ilhas de CpG , Epigenômica/métodos , Feminino , Predisposição Genética para Doença , Variação Genética , Estudo de Associação Genômica Ampla , Humanos , Lactente , Recém-Nascido , Exposição Materna/efeitos adversos , Gravidez , Efeitos Tardios da Exposição Pré-Natal , Locos de Características Quantitativas , Fumar/efeitos adversos
19.
Thorax ; 2017 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-29212667

RESUMO

INTRODUCTION: COPD is a chronic, progressive, inflammatory disease of the lungs and the third leading cause of death worldwide. The current knowledge of the pathophysiology of COPD is limited and novel insights in underlying disease mechanisms are urgently needed. Since there are clear parallels between ageing and COPD, we investigated genes underlying lung ageing in general and abnormal lung ageing in COPD. METHODS: Whole genome mRNA profiling was performed on lung tissue samples (n=1197) and differential gene expression with increasing age was analysed using an adjusted linear regression model. Subsequent pathway analysis was performed using GeneNetwork and the gene-expression signature was compared with lung ageing in the Genotype-Tissue Expression (GTEx) project. In a subset of patients with COPD (n=311) and non-COPD controls (n=270), we performed an interaction analysis between age and COPD to identify genes differentially expressed with age in COPD compared with controls, followed by gene set enrichment pathway analysis. RESULTS: We identified a strong gene-expression signature for lung ageing with 3509 differentially expressed genes, of which 33.5% were found nominal significant in the GTEx project. Interestingly, we found EDA2R as a strong candidate gene for lung ageing. The age*COPD interaction analysis revealed 69 genes significantly differentially expressed with age between COPD and controls. CONCLUSIONS: Our study indicates that processes related to lung development, cell-cell contacts, calcium signalling and immune responses are involved in lung ageing in general. Pathways related to extracellular matrix, mammalian target of rapamycin signalling, splicing of introns and exons and the ribosome complex are proposed to be involved in abnormal lung ageing in COPD.

20.
Eur Respir J ; 49(5)2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28546273

RESUMO

We previously reported that epithelial-derived interleukin (IL)-1α drives fibroblast-derived inflammation in the lung epithelial-mesenchymal trophic unit. Since miR-146a-5p has been shown to negatively regulate IL-1 signalling, we investigated the role of miR-146a-5p in the regulation of IL-1α-driven inflammation in chronic obstructive pulmonary disease (COPD).Human bronchial epithelial (16HBE14o-) cells were co-cultured with control and COPD-derived primary human lung fibroblasts (PHLFs), and miR-146a-5p expression was assessed with and without IL-1α neutralising antibody. Genomic DNA was assessed for the presence of the single nucleotide polymorphism (SNP) rs2910164. miR-146a-5p mimics were used for overexpression studies to assess IL-1α-induced signalling and IL-8 production by PHLFs.Co-culture of PHLFs with airway epithelial cells significantly increased the expression of miR-146a-5p and this induction was dependent on epithelial-derived IL-1α. miR-146a-5p overexpression decreased IL-1α-induced IL-8 secretion in PHLFs via downregulation of IL-1 receptor-associated kinase-1. In COPD PHLFs, the induction of miR-146a-5p was significantly less compared with controls and was associated with the SNP rs2910164 (GG allele) in the miR-146a-5p gene.Our results suggest that induction of miR-146a-5p is involved in epithelial-fibroblast communication in the lungs and negatively regulates epithelial-derived IL-1α induction of IL-8 by fibroblasts. The decreased levels of miR-146a-5p in COPD fibroblasts may induce a more pro-inflammatory phenotype, contributing to chronic inflammation in COPD.


Assuntos
Epitélio/metabolismo , Fibroblastos/metabolismo , MicroRNAs/metabolismo , Doença Pulmonar Obstrutiva Crônica/metabolismo , Alelos , Anticorpos Neutralizantes/química , Brônquios/metabolismo , Linhagem Celular Tumoral , Fumar Cigarros , Técnicas de Cocultura , Meios de Cultivo Condicionados , Células Epiteliais/metabolismo , Humanos , Inflamação , Interleucina-1alfa/metabolismo , Interleucina-8/metabolismo , Polimorfismo de Nucleotídeo Único , Transdução de Sinais , Produtos do Tabaco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA