Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Pathog ; 15(5): e1007773, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31107907

RESUMO

Neutrophil-derived networks of DNA-composed extracellular fibers covered with antimicrobial molecules, referred to as neutrophil extracellular traps (NETs), are recognized as a physiological microbicidal mechanism of innate immunity. The formation of NETs is also classified as a model of a cell death called NETosis. Despite intensive research on the NETs formation in response to pathogens, the role of specific bacteria-derived virulence factors in this process, although postulated, is still poorly understood. The aim of our study was to determine the role of gingipains, cysteine proteases responsible for the virulence of P. gingivalis, on the NETosis process induced by this major periodontopathogen. We showed that NETosis triggered by P. gingivalis is gingipain dependent since in the stark contrast to the wild-type strain (W83) the gingipain-null mutant strain only slightly induced the NETs formation. Furthermore, the direct effect of proteases on NETosis was documented using purified gingipains. Notably, the induction of NETosis was dependent on the catalytic activity of gingipains, since proteolytically inactive forms of enzymes showed reduced ability to trigger the NETs formation. Mechanistically, gingipain-induced NETosis was dependent on proteolytic activation of protease-activated receptor-2 (PAR-2). Intriguingly, both P. gingivalis and purified Arg-specific gingipains (Rgp) induced NETs that not only lacked bactericidal activity but instead stimulated the growth of bacteria species otherwise susceptible to killing in NETs. This protection was executed by proteolysis of bactericidal components of NETs. Taken together, gingipains play a dual role in NETosis: they are the potent direct inducers of NETs formation but in the same time, their activity prevents P. gingivalis entrapment and subsequent killing. This may explain a paradox that despite the massive accumulation of neutrophils and NETs formation in periodontal pockets periodontal pathogens and associated pathobionts thrive in this environment.


Assuntos
Adesinas Bacterianas/imunologia , Infecções por Bacteroidaceae/imunologia , Cisteína Endopeptidases/imunologia , Armadilhas Extracelulares/imunologia , Neutrófilos/imunologia , Peritonite/imunologia , Porphyromonas gingivalis/imunologia , Porphyromonas gingivalis/patogenicidade , Receptor PAR-2/metabolismo , Adesinas Bacterianas/metabolismo , Animais , Infecções por Bacteroidaceae/metabolismo , Infecções por Bacteroidaceae/microbiologia , Infecções por Bacteroidaceae/patologia , Células Cultivadas , Cisteína Endopeptidases/metabolismo , Armadilhas Extracelulares/microbiologia , Feminino , Cisteína Endopeptidases Gingipaínas , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Neutrófilos/microbiologia , Neutrófilos/patologia , Peritonite/metabolismo , Peritonite/microbiologia , Receptor PAR-2/imunologia , Transdução de Sinais
2.
FASEB J ; 33(11): 11925-11940, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31381863

RESUMO

Meprin ß is a membrane-bound metalloprotease involved in extracellular matrix assembly and inflammatory processes in health and disease. A disintegrin and metalloproteinase (ADAM)10 and ADAM17 are physiologic relevant sheddases of inactive promeprin ß, which influences its substrate repertoire and subsequent biologic functions. Proteomic analysis also revealed several ADAMs as putative meprin ß substrates. Here, we demonstrate specific N-terminal processing of ADAM9, 10, and 17 by meprin ß and identify cleavage sites within their prodomains. Because ADAM prodomains can act as specific inhibitors, we postulate a role for meprin ß in the regulation of ADAM activities. Indeed, prodomain cleavage by meprin ß caused increased ADAM protease activities, as observed by peptide-based cleavage assays and demonstrated by increased ectodomain shedding activity. Direct interaction of meprin ß and ADAM proteases could be shown by immunofluorescence microscopy and immunoprecipitation experiments. As demonstrated by a bacterial activator of meprin ß and additional measurement of TNF-α shedding on bone marrow-derived macrophages, meprin ß/ADAM protease interactions likely influence inflammatory conditions. Thus, we identified a novel proteolytic pathway of meprin ß with ADAM proteases to control protease activities at the cell surface as part of the protease web.-Wichert, R., Scharfenberg, F., Colmorgen, C., Koudelka, T., Schwarz, J., Wetzel, S., Potempa, B., Potempa, J., Bartsch, J. W., Sagi, I., Tholey, A., Saftig, P., Rose-John, S., Becker-Pauly, C. Meprin ß induces activities of A disintegrin and metalloproteinases 9, 10, and 17 by specific prodomain cleavage.


Assuntos
Proteínas ADAM/metabolismo , Proteína ADAM10/metabolismo , Proteína ADAM17/metabolismo , Proteínas de Membrana/metabolismo , Metaloendopeptidases/metabolismo , Proteínas ADAM/química , Proteínas ADAM/genética , Proteína ADAM10/química , Proteína ADAM10/genética , Proteína ADAM17/química , Proteína ADAM17/genética , Animais , Membrana Celular/metabolismo , Células Cultivadas , Matriz Extracelular/metabolismo , Células HEK293 , Humanos , Proteínas de Membrana/química , Proteínas de Membrana/genética , Metaloendopeptidases/genética , Camundongos Endogâmicos C57BL , Domínios Proteicos , Proteólise , Proteômica/métodos , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
3.
FASEB J ; 33(6): 7490-7504, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30916990

RESUMO

Biologic activity of proteases is mainly characterized by the substrate specificity, tissue distribution, and cellular localization. The human metalloproteases meprin α and meprin ß share 41% sequence identity and exhibit a similar cleavage specificity with a preference for negatively charged amino acids. However, shedding of meprin α by furin on the secretory pathway makes it a secreted enzyme in comparison with the membrane-bound meprin ß. In this study, we identified human meprin α and meprin ß as forming covalently linked membrane-tethered heterodimers in the early endoplasmic reticulum, thereby preventing furin-mediated secretion of meprin α. Within this newly formed enzyme complex, meprin α was able to be activated on the cell surface and detected by cleavage of a novel specific fluorogenic peptide substrate. However, the known meprin ß substrates amyloid precursor protein and CD99 were not shed by membrane-tethered meprin α. On the other hand, being linked to meprin α, activation of or substrate cleavage by meprin ß on the cell surface was not altered. Interestingly, proteolytic activity of both proteases was increased in the heteromeric complex, indicating an increased proteolytic potential at the plasma membrane. Because meprins are susceptibility genes for inflammatory bowel disease (IBD), and to investigate the physiologic impact of the enzyme complex, we performed transcriptome analyses of intestinal mucosa from meprin-knockout mice. Comparison of the transcriptional gene analysis data with gene analyses of IBD patients revealed that different gene subsets were dysregulated if meprin α was expressed alone or in the enzyme complex, demonstrating the physiologic and pathophysiological relevance of the meprin heterodimer formation.-Peters, F., Scharfenberg, F., Colmorgen, C., Armbrust, F., Wichert, R., Arnold, P., Potempa, B., Potempa, J., Pietrzik, C. U., Häsler, R., Rosenstiel, P., Becker-Pauly, C. Tethering soluble meprin α in an enzyme complex to the cell surface affects IBD-associated genes.


Assuntos
Doenças Inflamatórias Intestinais/genética , Metaloendopeptidases/metabolismo , Animais , Membrana Celular/metabolismo , Células HeLa , Humanos , Metaloendopeptidases/genética , Camundongos , Camundongos Knockout
4.
Int J Mol Sci ; 21(7)2020 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-32260245

RESUMO

Microorganisms that create mixed-species biofilms in the human oral cavity include, among others, the opportunistic fungus Candida albicans and the key bacterial pathogen in periodontitis, Porphyromonas gingivalis. Both species use arsenals of virulence factors to invade the host organism and evade its immune system including peptidylarginine deiminase that citrullinates microbial and host proteins, altering their function. We assessed the effects of this modification on the interactions between the C. albicans cell surface and human plasminogen and kininogen, key components of plasma proteolytic cascades related to the maintenance of hemostasis and innate immunity. Mass spectrometry was used to identify protein citrullination, and microplate tests to quantify the binding of modified plasminogen and kininogen to C. albicans cells. Competitive radioreceptor assays tested the affinity of citrullinated kinins to their specific cellular receptors. The citrullination of surface-exposed fungal proteins reduced the level of unmodified plasminogen binding but did not affect unmodified kininogen binding. However, the modification of human proteins did not disrupt their adsorption to the unmodified fungal cells. In contrast, the citrullination of kinins exerted a significant impact on their interactions with cellular receptors reducing their affinity and thus affecting the role of kinin peptides in the development of inflammation.


Assuntos
Candida albicans/fisiologia , Proteínas Fúngicas/metabolismo , Cininogênios/metabolismo , Plasminogênio/metabolismo , Porphyromonas gingivalis/enzimologia , Desiminases de Arginina em Proteínas/farmacologia , Proteínas de Bactérias/farmacologia , Biofilmes/efeitos dos fármacos , Candida albicans/efeitos dos fármacos , Cromatografia Líquida , Citrulinação , Humanos , Imunidade Inata , Cininogênios/química , Ligação Proteica , Espectrometria de Massas em Tandem
5.
J Biol Chem ; 292(14): 5724-5735, 2017 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-28196869

RESUMO

Skewing of the human oral microbiome causes dysbiosis and preponderance of bacteria such as Porphyromonas gingivalis, the main etiological agent of periodontitis. P. gingivalis secretes proteolytic gingipains (Kgp and RgpA/B) as zymogens inhibited by a pro-domain that is removed during extracellular activation. Unraveling the molecular mechanism of Kgp zymogenicity is essential to design inhibitors blocking its activity. Here, we found that the isolated 209-residue Kgp pro-domain is a boomerang-shaped all-ß protein similar to the RgpB pro-domain. Using composite structural information of Kgp and RgpB, we derived a plausible homology model and mechanism of Kgp-regulating zymogenicity. Accordingly, the pro-domain would laterally attach to the catalytic moiety in Kgp and block the active site through an exposed inhibitory loop. This loop features a lysine (Lys129) likely occupying the S1 specificity pocket and exerting latency. Lys129 mutation to glutamate or arginine led to misfolded protein that was degraded in vivo Mutation to alanine gave milder effects but still strongly diminished proteolytic activity, without affecting the subcellular location of the enzyme. Accordingly, the interactions of Lys129 within the S1 pocket are also essential for correct folding. Uniquely for gingipains, the isolated Kgp pro-domain dimerized through an interface, which partially overlapped with that between the catalytic moiety and the pro-domain within the zymogen, i.e. both complexes are mutually exclusive. Thus, pro-domain dimerization, together with partial rearrangement of the active site upon activation, explains the lack of inhibition of the pro-domain in trans. Our results reveal that the specific latency mechanism of Kgp differs from those of Rgps.


Assuntos
Adesinas Bacterianas/química , Cisteína Endopeptidases/química , Precursores Enzimáticos/química , Porphyromonas gingivalis/enzimologia , Porphyromonas gingivalis/patogenicidade , Fatores de Virulência/química , Adesinas Bacterianas/genética , Adesinas Bacterianas/metabolismo , Infecções por Bacteroidaceae/enzimologia , Infecções por Bacteroidaceae/genética , Cisteína Endopeptidases/genética , Cisteína Endopeptidases/metabolismo , Precursores Enzimáticos/genética , Precursores Enzimáticos/metabolismo , Cisteína Endopeptidases Gingipaínas , Gengivite/enzimologia , Gengivite/genética , Humanos , Microbiota , Boca/microbiologia , Porphyromonas gingivalis/genética , Domínios Proteicos , Multimerização Proteica , Relação Estrutura-Atividade , Fatores de Virulência/metabolismo
6.
Clin Oral Investig ; 22(2): 1009-1018, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28726036

RESUMO

OBJECTIVES: The present study was aimed to determine whether trefoil factor family (TFF) peptides which were generally considered to be resistant to proteolysis could be digested by gingipains, a major proteinases produced by Porphyromonas gingivalis. MATERIALS AND METHODS: Recombinant human TFF1, TFF2, and TFF3 peptides were used as substrates. Gingipains including arginine gingipain (RgpB) and lysine gingipain (Kgp) were used as enzymes. Trypsin was used as a control protease. Matrix-assisted laser desorption/ionization with time-of-flight / time-of-flight (MALDI-TOF/TOF) and liquid chromatography mass spectrometry (LC-MS) were used for analyzing peptide mass signals and amino acid sequences of digested TFF peptides. RESULTS: MALDI-TOF/TOF analyses demonstrated that Kgp, RgpB, and trypsin were able to cleave TFF1 and TFF2 peptides, resulting in different patterns of digested fragments. However, impurity in recombinant TFF3 peptide substrates affected the interpretations of enzymatic reaction by MALDI-TOF/TOF. LC-MS analyses demonstrated that identified fragments of TFF1, TFF2, and TFF3 from digestion by gingipains were similar to those by trypsin. CONCLUSIONS: Using MALDI-TOF/TOF and LC-MS, the present study provides new information that gingipains containing trypsin-like activities are able to digest TFF peptides. CLINICAL RELEVANCE: The proteolytic effects of gingipains on TFF peptides may be responsible for reduction of salivary TFF peptides in chronic periodontitis patients. Further investigations to determine the pathological effects of gingipains on TFF peptides in saliva and periodontal tissues of patients with chronic periodontitis would be of interest.


Assuntos
Adesinas Bacterianas/efeitos dos fármacos , Cisteína Endopeptidases/efeitos dos fármacos , Proteólise , Fatores Trefoil/farmacologia , Cromatografia Líquida , Cisteína Endopeptidases Gingipaínas , Humanos , Proteínas Recombinantes/farmacologia , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
7.
J Biol Chem ; 291(36): 18753-64, 2016 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-27354280

RESUMO

Periodontitis, a chronic inflammation driven by dysbiotic subgingival bacterial flora, is linked on clinical levels to the development of a number of systemic diseases and to the development of oral and gastric tract tumors. A key pathogen, Porphyromonas gingivalis, secretes gingipains, cysteine proteases implicated as the main factors in the development of periodontitis. Here we hypothesize that gingipains may be linked to systemic pathologies through the deregulation of kallikrein-like proteinase (KLK) family members. KLKs are implicated in cancer development and are clinically utilized as tumor progression markers. In tissues, KLK activity is strictly controlled by a limited number of tissue-specific inhibitors, including SPINK6, an inhibitor of these proteases in skin and oral epithelium. Here we identify gingipains as the only P. gingivalis proteases responsible for SPINK6 degradation. We further show that gingipains, even at low nanomolar concentrations, cleaved SPINK6 in concentration- and time-dependent manner. The proteolysis was accompanied by loss of inhibition against KLK13. We also mapped the cleavage by Arg-specific gingipains to the reactive site loop of the SPINK6 inhibitor. Moreover, we identified a significant fraction of SPINK6-sensitive proteases in healthy saliva and confirmed the ability of gingipains to inactivate SPINK6 under ex vivo conditions. Finally, we demonstrate the double-edge action of gingipains, which, in addition, can activate KLKs because of gingipain K-mediated proteolytic processing of the zymogenic proform of KLK13. Altogether, the results indicate the potential of P. gingivalis to disrupt the control system of KLKs, providing a possible mechanistic link between periodontal disease and tumor development.


Assuntos
Adesinas Bacterianas/metabolismo , Cisteína Endopeptidases/metabolismo , Porphyromonas gingivalis/enzimologia , Proteínas Secretadas Inibidoras de Proteinases/metabolismo , Saliva/metabolismo , Proteínas e Peptídeos Salivares/metabolismo , Adesinas Bacterianas/química , Cisteína Endopeptidases/química , Cisteína Endopeptidases Gingipaínas , Humanos , Calicreínas/antagonistas & inibidores , Calicreínas/química , Calicreínas/metabolismo , Estabilidade Proteica , Proteínas Secretadas Inibidoras de Proteinases/química , Saliva/química , Proteínas e Peptídeos Salivares/antagonistas & inibidores , Proteínas e Peptídeos Salivares/química , Inibidores de Serinopeptidase do Tipo Kazal
8.
J Biol Chem ; 289(47): 32481-7, 2014 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-25324545

RESUMO

Evasion of killing by the complement system, a crucial part of innate immunity, is a key evolutionary strategy of many human pathogens. A major etiological agent of chronic periodontitis, the Gram-negative bacterium Porphyromonas gingivalis, produces a vast arsenal of virulence factors that compromise human defense mechanisms. One of these is peptidylarginine deiminase (PPAD), an enzyme unique to P. gingivalis among bacteria, which converts Arg residues in polypeptide chains into citrulline. Here, we report that PPAD citrullination of a critical C-terminal arginine of the anaphylatoxin C5a disabled the protein function. Treatment of C5a with PPAD in vitro resulted in decreased chemotaxis of human neutrophils and diminished calcium signaling in monocytic cell line U937 transfected with the C5a receptor (C5aR) and loaded with a fluorescent intracellular calcium probe: Fura-2 AM. Moreover, a low degree of citrullination of internal arginine residues by PPAD was also detected using mass spectrometry. Further, after treatment of C5 with outer membrane vesicles naturally shed by P. gingivalis, we observed generation of C5a totally citrullinated at the C-terminal Arg-74 residue (Arg74Cit). In stark contrast, only native C5a was detected after treatment with PPAD-null outer membrane vesicles. Our study suggests reduced antibacterial and proinflammatory capacity of citrullinated C5a, achieved via lower level of chemotactic potential of the modified molecule, and weaker cell activation. In the context of previous studies, which showed crosstalk between C5aR and Toll-like receptors, as well as enhanced arthritis development in mice infected with PPAD-expressing P. gingivalis, our findings support a crucial role of PPAD in the virulence of P. gingivalis.


Assuntos
Proteínas de Bactérias/metabolismo , Complemento C5a/metabolismo , Hidrolases/metabolismo , Porphyromonas gingivalis/enzimologia , Arginina/metabolismo , Proteínas de Bactérias/genética , Cálcio/metabolismo , Membrana Celular/enzimologia , Movimento Celular , Células Cultivadas , Quimiotaxia , Citrulina/metabolismo , Eletroforese em Gel de Poliacrilamida , Humanos , Hidrolases/genética , Mutação , Neutrófilos/citologia , Neutrófilos/metabolismo , Porphyromonas gingivalis/genética , Desiminases de Arginina em Proteínas , Receptor da Anafilatoxina C5a/genética , Receptor da Anafilatoxina C5a/metabolismo , Vesículas Transportadoras/enzimologia , Células U937
9.
J Biol Chem ; 289(46): 32291-32302, 2014 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-25266723

RESUMO

Cysteine peptidases are key proteolytic virulence factors of the periodontopathogen Porphyromonas gingivalis, which causes chronic periodontitis, the most prevalent dysbiosis-driven disease in humans. Two peptidases, gingipain K (Kgp) and R (RgpA and RgpB), which differ in their selectivity after lysines and arginines, respectively, collectively account for 85% of the extracellular proteolytic activity of P. gingivalis at the site of infection. Therefore, they are promising targets for the design of specific inhibitors. Although the structure of the catalytic domain of RgpB is known, little is known about Kgp, which shares only 27% sequence identity. We report the high resolution crystal structure of a competent fragment of Kgp encompassing the catalytic cysteine peptidase domain and a downstream immunoglobulin superfamily-like domain, which is required for folding and secretion of Kgp in vivo. The structure, which strikingly resembles a tooth, was serendipitously trapped with a fragment of a covalent inhibitor targeting the catalytic cysteine. This provided accurate insight into the active site and suggested that catalysis may require a catalytic triad, Cys(477)-His(444)-Asp(388), rather than the cysteine-histidine dyad normally found in cysteine peptidases. In addition, a 20-Å-long solvent-filled interior channel traverses the molecule and links the bottom of the specificity pocket with the molecular surface opposite the active site cleft. This channel, absent in RgpB, may enhance the plasticity of the enzyme, which would explain the much lower activity in vitro toward comparable specific synthetic substrates. Overall, the present results report the architecture and molecular determinants of the working mechanism of Kgp, including interaction with its substrates.


Assuntos
Adesinas Bacterianas/química , Cisteína Endopeptidases/química , Periodontite/enzimologia , Periodontite/microbiologia , Porphyromonas gingivalis/enzimologia , Sequência de Aminoácidos , Catálise , Domínio Catalítico , Cristalografia por Raios X , Cisteína Endopeptidases Gingipaínas , Humanos , Imunoglobulinas/química , Lisina/química , Modelos Moleculares , Dados de Sequência Molecular , Porphyromonas gingivalis/patogenicidade , Homologia de Sequência de Aminoácidos , Solventes/química , Fatores de Virulência
10.
Biol Chem ; 396(4): 377-84, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25720118

RESUMO

Gingipain proteases are important virulence factors from the periodontal pathogen Porphyromonas gingivalis and are the target of many in vitro studies. Due to their close biochemical properties, purification of individual gingipains is difficult and requires multiple chromatographic steps. In this study, we demonstrate that insertion of a hexahistidine affinity tag upstream of a C-terminal outer membrane translocation signal in RgpB gingipain leads to the secretion of a soluble, mature form of RgpB bearing the affinity tag that can easily be purified by nickel-chelating affinity chromatography. The final product obtained high yielding high purity is biochemically indistinguishable from the native RgpB enzyme.


Assuntos
Adesinas Bacterianas/isolamento & purificação , Adesinas Bacterianas/metabolismo , Cisteína Endopeptidases/isolamento & purificação , Cisteína Endopeptidases/metabolismo , Porphyromonas gingivalis/metabolismo , Adesinas Bacterianas/química , Infecções por Bacteroidaceae/microbiologia , Cromatografia de Afinidade , Cisteína Endopeptidases/química , Cisteína Endopeptidases Gingipaínas , Humanos , Porphyromonas gingivalis/química , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo
11.
J Biol Chem ; 288(20): 14287-14296, 2013 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-23558682

RESUMO

Zymogenicity is a regulatory mechanism that prevents inadequate catalytic activity in the wrong context. It plays a central role in maintaining microbial virulence factors in an inactive form inside the pathogen until secretion. Among these virulence factors is the cysteine peptidase gingipain B (RgpB), which is the major virulence factor secreted by the periodontopathogen Porphyromonas gingivalis that attacks host vasculature and defense proteins. The structure of the complex between soluble mature RgpB, consisting of a catalytic domain and an immunoglobulin superfamily domain, and its 205-residue N-terminal prodomain, the largest structurally characterized to date for a cysteine peptidase, reveals a novel fold for the prodomain that is distantly related to sugar-binding lectins. It attaches laterally to the catalytic domain through a large concave surface. The main determinant for latency is a surface "inhibitory loop," which approaches the active-site cleft of the enzyme on its non-primed side in a substrate-like manner. It inserts an arginine (Arg(126)) into the S1 pocket, thus matching the substrate specificity of the enzyme. Downstream of Arg(126), the polypeptide leaves the cleft, thereby preventing cleavage. Moreover, the carbonyl group of Arg(126) establishes a very strong hydrogen bond with the co-catalytic histidine, His(440), pulling it away from the catalytic cysteine, Cys(473), and toward Glu(381), which probably plays a role in orienting the side chain of His(440) during catalysis. The present results provide the structural determinants of zymogenic inhibition of RgpB by way of a novel inhibitory mechanism for peptidases in general and open the field for the design of novel inhibitory strategies in the treatment of human periodontal disease.


Assuntos
Adesinas Bacterianas/metabolismo , Cisteína Endopeptidases/metabolismo , Cisteína/metabolismo , Regulação Bacteriana da Expressão Gênica , Porphyromonas gingivalis/metabolismo , Fatores de Virulência/metabolismo , Arginina/metabolismo , Domínio Catalítico , Cristalografia por Raios X/métodos , Precursores Enzimáticos/metabolismo , Escherichia coli/metabolismo , Cisteína Endopeptidases Gingipaínas , Modelos Moleculares , Conformação Molecular , Dobramento de Proteína , Domínios e Motivos de Interação entre Proteínas
12.
Biochim Biophys Acta ; 1832(4): 517-26, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23313574

RESUMO

Gingipains are cysteine proteases that represent major virulence factors of the periodontopathogenic bacterium Porphyromonas gingivalis. Gingipains are reported to degrade extracellular matrix (ECM) of periodontal tissues, leading to tissue destruction and apoptosis. The exact mechanism is not known, however. Fibronectin and tenascin-C are pericellular ECM glycoproteins present in periodontal tissues. Whereas fibronectin mediates fibroblast adhesion, tenascin-C binds to fibronectin and inhibits its cell-spreading activity. Using purified proteins in vitro, we asked whether fibronectin and tenascin-C are cleaved by gingipains at clinically relevant concentrations, and how fragmentation by the bacterial proteases affects their biological activity in cell adhesion. Fibronectin was cleaved into distinct fragments by all three gingipains; however, only arginine-specific HRgpA and RgpB but not lysine-specific Kgp destroyed its cell-spreading activity. This result was confirmed with recombinant cell-binding domain of fibronectin. Of the two major tenascin-C splice variants, the large but not the small was a substrate for gingipains, indicating that cleavage occurred primarily in the alternatively spliced domain. Surprisingly, cleavage of large tenascin-C variant by all three gingipains generated fragments with increased anti-adhesive activity towards intact fibronectin. Fibronectin and tenascin-C fragments were detected in gingival crevicular fluid of a subset of periodontitis patients. We conclude that cleavage by gingipains directly affects the biological activity of both fibronectin and tenascin-C in a manner that might lead to increased cell detachment and loss during periodontal disease.


Assuntos
Adesinas Bacterianas , Cisteína Endopeptidases , Fibronectinas , Periodontite , Tenascina , Adesinas Bacterianas/genética , Adesinas Bacterianas/metabolismo , Processamento Alternativo/genética , Animais , Apoptose , Arginina/metabolismo , Adesão Celular , Células Cultivadas , Cisteína Endopeptidases/genética , Cisteína Endopeptidases/metabolismo , Matriz Extracelular/metabolismo , Matriz Extracelular/patologia , Fibroblastos , Fibronectinas/genética , Fibronectinas/metabolismo , Cisteína Endopeptidases Gingipaínas , Humanos , Lisina/metabolismo , Camundongos , Periodontite/genética , Periodontite/metabolismo , Porphyromonas gingivalis/enzimologia , Porphyromonas gingivalis/patogenicidade , Ligação Proteica , Tenascina/genética , Tenascina/metabolismo
13.
Biochim Biophys Acta ; 1830(8): 4218-28, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23583629

RESUMO

BACKGROUND: Arginine-specific (RgpB and RgpA) and lysine-specific (Kgp) gingipains are secretory cysteine proteinases of Porphyromonas gingivalis that act as important virulence factors for the organism. They are translated as zymogens with both N- and C-terminal extensions, which are proteolytically cleaved during secretion. In this report, we describe and characterize inhibition of the gingipains by their N-terminal prodomains to maintain latency during their export through the cellular compartments. METHODS: Recombinant forms of various prodomains (PD) were analyzed for their interaction with mature gingipains. The kinetics of their inhibition of proteolytic activity along with the formation of stable inhibitory complexes with native gingipains was studied by gel filtration, native PAGE and substrate hydrolysis. RESULTS: PDRgpB and PDRgpA formed tight complexes with arginine-specific gingipains (Ki in the range from 6.2nM to 0.85nM). In contrast, PDKgp showed no inhibitory activity. A conserved Arg-102 residue in PDRgpB and PDRgpA was recognized as the P1 residue. Mutation of Arg-102 to Lys reduced inhibitory potency of PDRgpB by one order of magnitude while its substitutions with Ala, Gln or Gly totally abolished the PD inhibitory activity. Covalent modification of the catalytic cysteine with tosyl-l-Lys-chloromethylketone (TLCK) or H-D-Phe-Arg-chloromethylketone did not affect formation of the stable complex. CONCLUSION: Latency of arginine-specific progingipains is efficiently exerted by N-terminal prodomains thus protecting the periplasm from potentially damaging effect of prematurely activated gingipains. GENERAL SIGNIFICANCE: Blocking progingipain activation may offer an attractive strategy to attenuate P. gingivalis pathogenicity.


Assuntos
Adesinas Bacterianas/química , Cisteína Endopeptidases/química , Inibidores de Cisteína Proteinase/farmacologia , Fragmentos de Peptídeos/farmacologia , Porphyromonas gingivalis/patogenicidade , Adesinas Bacterianas/efeitos dos fármacos , Adesinas Bacterianas/metabolismo , Cisteína Endopeptidases/efeitos dos fármacos , Cisteína Endopeptidases/metabolismo , Ativação Enzimática , Cisteína Endopeptidases Gingipaínas , Glicosilação , Estrutura Terciária de Proteína , Proteínas Recombinantes/farmacologia
14.
Biomedicines ; 12(5)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38790926

RESUMO

Patients with rheumatoid arthritis (RA) have altered levels of exhaled nitric oxide (NO) compared with healthy controls. Here, we investigated whether the clinical features of and immunological factors in RA pathogenesis could be linked to the NO lung dynamics in early disease. A total of 44 patients with early RA and anti-citrullinated peptide antibodies (ACPAs), specified as cyclic citrullinated peptide 2 (CCP2), were included. Their exhaled NO levels were measured, and the alveolar concentration, the airway compartment diffusing capacity and the airway wall concentration of NO were estimated using the Högman-Meriläinen algorithm. The disease activity was measured using the Disease Activity Score for 28 joints. Serum samples were analysed for anti-CCP2, rheumatoid factor, free secretory component, secretory component containing ACPAs, antibodies against Porphyromonas gingivalis (Rgp) and total levels of IgA, IgA1 and IgA2. Significant negative correlations were found between the airway wall concentration of NO and the number of swollen joints (Rho -0.48, p = 0.004), between the airway wall concentration of NO and IgA rheumatoid factor (Rho -0.41, p = 0.017), between the alveolar concentration and free secretory component (Rho -0.35, p = 0.023) and between the alveolar concentration and C-reactive protein (Rho -0.36, p = 0.016), but none were found for anti-CCP2, IgM rheumatoid factor or the anti-Rgp levels. In conclusion, altered NO levels, particularly its production in the airway walls, may have a role in the pathogenesis of ACPA-positive RA.

15.
Front Immunol ; 14: 1183194, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37325636

RESUMO

Background: Periodontitis and oral pathogenic bacteria can contribute to the development of rheumatoid arthritis (RA). A connection between serum antibodies to Porphyromonas gingivalis (P. gingivalis) and RA has been established, but data on saliva antibodies to P. gingivalis in RA are lacking. We evaluated antibodies to P. gingivalis in serum and saliva in two Swedish RA studies as well as their association with RA, periodontitis, antibodies to citrullinated proteins (ACPA), and RA disease activity. Methods: The SARA (secretory antibodies in RA) study includes 196 patients with RA and 101 healthy controls. The Karlskrona RA study includes 132 patients with RA ≥ 61 years of age, who underwent dental examination. Serum Immunoglobulin G (IgG) and Immunoglobulin A (IgA) antibodies and saliva IgA antibodies to the P. gingivalis-specific Arg-specific gingipain B (RgpB) were measured in patients with RA and controls. Results: The level of saliva IgA anti-RgpB antibodies was significantly higher among patients with RA than among healthy controls in multivariate analysis adjusted for age, gender, smoking, and IgG ACPA (p = 0.022). Saliva IgA anti-RgpB antibodies were associated with RA disease activity in multivariate analysis (p = 0.036). Anti-RgpB antibodies were not associated with periodontitis or serum IgG ACPA. Conclusion: Patients with RA had higher levels of saliva IgA anti-RgpB antibodies than healthy controls. Saliva IgA anti-RgpB antibodies may be associated with RA disease activity but were not associated with periodontitis or serum IgG ACPA. Our results indicate a local production of IgA anti-RgpB in the salivary glands that is not accompanied by systemic antibody production.


Assuntos
Artrite Reumatoide , Periodontite , Humanos , Suécia/epidemiologia , Porphyromonas gingivalis , Saliva , Peptídeos Cíclicos , Imunoglobulina G , Cisteína Endopeptidases Gingipaínas , Imunoglobulina A
16.
Biol Chem ; 393(12): 1471-6, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23667904

RESUMO

Bestatin, a specific inhibitor of metalloaminopeptidases,inhibits the growth of Porphyromonas gingivalis. To identify its target enzyme, a library of fluorescent substrates was used but no metalloaminopeptidase activity was found. The aminopeptidase activity of P. gingivalis was bestatin-insensitive and directed exclusively toward N-terminal arginine and lysine substrates. Class-specific inhibitors and gingipain-null mutants showed that gingipains were the only enzymes responsible for this activity.The kinetic constants obtained for Rgps were comparable to those of human aminopeptidases but Kgp aminopeptidase activity was weaker. This finding reveals a new role for gingipains as aminopeptidases in the degradation of proteins and peptides in P. gingivalis.


Assuntos
Adesinas Bacterianas/metabolismo , Aminopeptidases/antagonistas & inibidores , Cisteína Endopeptidases/metabolismo , Leucina/análogos & derivados , Porphyromonas gingivalis/efeitos dos fármacos , Porphyromonas gingivalis/enzimologia , Adesinas Bacterianas/genética , Infecções por Bacteroidaceae/tratamento farmacológico , Infecções por Bacteroidaceae/microbiologia , Cisteína Endopeptidases/genética , Deleção de Genes , Cisteína Endopeptidases Gingipaínas , Humanos , Leucina/farmacologia , Porphyromonas gingivalis/genética , Especificidade por Substrato
17.
Biol Chem ; 393(9): 971-7, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22944696

RESUMO

RgpA and Kgp gingipains are non-covalent complexes of endoprotease catalytic and hemagglutinin-adhesin domains on the surface of Porphyromonas gingivalis. A motif conserved in each domain has been suggested to function as an oligomerization motif. We tested this hypothesis by mutating motif residues to hexahistidine or insertion of hexahistidine tag to disrupt the motif within the Kgp catalytic domain. All modifications led to the secretion of entire Kgp activity into the growth media, predominantly in a form without functional His-tag. This confirmed the role of the conserved motif in correct posttranslational proteolytic processing and assembly of the multidomain complexes.


Assuntos
Adesinas Bacterianas/química , Adesinas Bacterianas/metabolismo , Cisteína Endopeptidases/química , Cisteína Endopeptidases/metabolismo , Adesinas Bacterianas/genética , Sequência de Aminoácidos , Sequência de Bases , Cisteína Endopeptidases/genética , Cisteína Endopeptidases Gingipaínas , Dados de Sequência Molecular
18.
J Clin Med ; 11(4)2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-35207282

RESUMO

There is accumulating data suggesting that periodontitis is associated with increased risk of systemic and autoimmune diseases, including cardiovascular disease, rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE), and there is an unmet need to identify these individuals early. With the periodontal bacteria Porphyromonas gingivalis (Pg) as one of the key drivers of periodontitis, we set out to investigate whether antibodies to Pg virulence factor arginine gingipain (Rgp) could serve as a biomarker for periodontitis patients at increased risk of autoimmunity and systemic disease. We measured serum anti-Rgp IgG in three study populations: PAROKRANK (779 individuals with myocardial infarction (MI); 719 controls), where 557 had periodontitis, and 312 were positive for autoantibodies associated with RA/SLE; the PerioGene North pilot (41 periodontitis; 39 controls); and an SLE case/control study (101 SLE; 100 controls). Anti-Rgp IgG levels were increased in severe periodontitis compared to controls (p < 0.0001), in individuals positive for anti-citrullinated protein antibodies (p = 0.04) and anti-dsDNA antibodies (p = 0.035), compared to autoantibody-negative individuals; and in MI patients versus matched controls (p = 0.035). Our data support longitudinal studies addressing the role of anti-Rgp antibodies as biomarkers for periodontitis patients at increased risk of developing autoimmunity linked to RA and SLE, and mechanisms underpinning these associations.

19.
mBio ; 13(3): e0378721, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35491845

RESUMO

Porphyromonas gingivalis, a keystone pathogen in periodontitis (PD), produces cysteine proteases named gingipains (RgpA, RgpB, and Kgp), which strongly affect the host immune system. The range of action of gingipains is extended by their release as components of outer membrane vesicles, which efficiently diffuse into surrounding gingival tissues. However, away from the anaerobic environment of periodontal pockets, increased oxygen levels lead to oxidation of the catalytic cysteine residues of gingipains, inactivating their proteolytic activity. In this context, the influence of catalytically inactive gingipains on periodontal tissues is of significant interest. Here, we show that proteolytically inactive RgpA induced a proinflammatory response in both gingival keratinocytes and dendritic cells. Inactive RgpA is bound to the cell surface of gingival keratinocytes in the region of lipid rafts, and using affinity chromatography, we identified RgpA-interacting proteins, including epidermal growth factor receptor (EGFR). Next, we showed that EGFR interaction with inactive RgpA stimulated the expression of inflammatory cytokines. The response was mediated via the EGFR-phosphatidylinositol 3-kinase (PI3K)-protein kinase B (AKT) signaling pathway, which when activated in the gingival tissue rich in dendritic cells in the proximity of the alveolar bone, may significantly contribute to bone resorption and the progress of PD. Taken together, these findings broaden our understanding of the biological role of gingipains, which in acting as proinflammatory factors in the gingival tissue, create a favorable milieu for the growth of inflammophilic pathobionts. IMPORTANCE Gingipain cysteine proteases are essential virulence factors of Porphyromonas gingivalis, an oral bacterium implicated in development of periodontitis. Gingipains diffusing from anaerobic periodontal pockets lose proteolytic activity in the oxygenated environment of gingival tissues. We found that despite the loss of activity, gingipains still elicit a strong inflammatory response, which may contribute to the progression of periodontitis and bone resorption. Moreover, we identified the host molecules utilized by the pathogen as receptors for proteolytically inactivated gingipains. The broad distribution of those receptors in human tissue suggests their involvement in systemic diseases associated with periodontal pathogens.


Assuntos
Reabsorção Óssea , Periodontite , Adesinas Bacterianas/metabolismo , Cisteína Endopeptidases/metabolismo , Receptores ErbB/metabolismo , Cisteína Endopeptidases Gingipaínas , Humanos , Imunidade , Bolsa Periodontal , Periodontite/microbiologia , Fosfatidilinositol 3-Quinases/metabolismo , Porphyromonas gingivalis/fisiologia
20.
mBio ; 12(3): e0050221, 2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34182783

RESUMO

Periodontal disease (PD) is an inflammatory disease of the supporting tissues of the teeth that develops in response to formation of a dysbiotic biofilm on the subgingival tooth surface. Although exacerbated inflammation leads to alveolar bone destruction and may cause tooth loss, the molecular basis of PD initiation and progression remains elusive. Control over the inflammatory reaction and return to homeostasis can be efficiently restored by negative regulators of Toll-like receptor (TLR) signaling pathways such as monocyte chemoattractant protein-induced protein 1 (MCPIP-1), which is constitutively expressed in gingival keratinocytes and prevents hyperresponsiveness in the gingiva. Here, we found that inflammophilic periodontal species influence the stability of MCPIP-1, leading to an aggravated response of the epithelium to proinflammatory stimulation. Among enzymes secreted by periodontal species, gingipains-cysteine proteases from Porphyromonas gingivalis-are considered major contributors to the pathogenic potential of bacteria, strongly influencing the components of the innate and adaptive immune system. Gingipain proteolytic activity leads to a rapid degradation of MCPIP-1, exacerbating the inflammatory response induced by endotoxin. Collectively, these results establish a novel mechanism of corruption of inflammatory signaling by periodontal pathogens, indicating new possibilities for treatment of this chronic disease. IMPORTANCE Periodontitis is a highly prevalent disease caused by accumulation of a bacterial biofilm. Periodontal pathogens use a number of virulence strategies that are under intensive study to find optimal therapeutic approaches against bone loss. In our work, we present a novel mechanism utilized by the key periodontal pathogen Porphyromonas gingivalis, based on the selective degradation of the negative regulator of inflammation, MCPIP-1. We found that the diminished levels of MCPIP-1 in gingival keratinocytes-cells at the forefront of the fight against bacteria-cause sensitization to endotoxins produced by other oral species. This results in an enhanced inflammatory response, which promotes the growth of inflammophilic pathobionts and damage of tooth-supporting tissues. Our observation is relevant to understanding the molecular basis of periodontitis and the development of new methods for treatment.


Assuntos
Gengiva/citologia , Inflamação , Queratinócitos/imunologia , Lipopolissacarídeos/metabolismo , Porphyromonas gingivalis/imunologia , Porphyromonas gingivalis/metabolismo , Ribonucleases/metabolismo , Transdução de Sinais , Animais , Biofilmes/crescimento & desenvolvimento , Células Cultivadas , Feminino , Cisteína Endopeptidases Gingipaínas , Queratinócitos/metabolismo , Queratinócitos/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Periodontite/microbiologia , Porphyromonas gingivalis/fisiologia , Ribonucleases/genética , Ribonucleases/imunologia , Organismos Livres de Patógenos Específicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA