RESUMO
BACKGROUND: The STECLA strain of Anopheles albimanus has been in continuous colony for many years and is the reference strain on which genomic studies for the species are based. Recently, the STECLA strain was demonstrated to be much less susceptible to ivermectin ingested in a blood meal (4-day LC50 of 1468 ng/ml) than all other Anopheles species tested to-date (LC50 values range from 7 to 56 ng/ml). The ability of An. albimanus to survive ingestion of ivermectin at concentrations far beyond that typically found in the blood of ivermectin-treated people or livestock (i.e., 30-70 ng/ml) could invalidate the use of ivermectin as a malaria vector control strategy in areas where An. albimanus is a primary vector. METHODS: To investigate this, host-seeking An. albimanus were captured in northern Belize and used in membrane feeding bioassays of ivermectin, employing the same methods as described earlier with the STECLA strain. RESULTS: Field-collected An. albimanus in Belize were 55 times more susceptible to ingested ivermectin than were the STECLA reference strain. Oral susceptibility to ivermectin in wild An. albimanus from Belize (4-day LC50 of 26 ng/ml) was equivalent to that of other Anopheles species tested. CONCLUSIONS: Contrary to initial assessments using a highly inbred strain of mosquito, laboratory studies using a field population indicate that ivermectin treatment of livestock could reduce An. albimanus populations in areas of Central America and the Caribbean where malaria transmission may occur. Toxicity screening of ivermectin and other systemic parasiticides for malaria control should examine wild populations of the vector species being targeted.
Assuntos
Anopheles , Malária , Animais , Belize , Humanos , Ivermectina/farmacologia , Laboratórios , Mosquitos VetoresRESUMO
BACKGROUND: Most malaria vector control programmes rely on indoor residual spraying of insecticides and insecticide-treated bed nets. This is effective against vector species that feed indoors at night and rest inside the house afterwards. In Central America, malaria vectors have different behaviours and are typically exophagic (i.e., bite outdoors), exophilic (i.e., remain outdoors after feeding), and zoophagic (i.e., as likely to feed on non-humans as humans). Thus, malaria elimination in Central America may require additional tactics. This pilot study investigated whether commercially-available products used to treat livestock for ticks could also be used to kill and/or sterilize zoophagic malaria vectors that feed on treated cattle in Belize. METHODS: Cattle were treated with either a pour-on formulation of 1% fipronil (3 heifers) or injection of 1% ivemectin (1 heifer). Control heifers (n = 2) were left untreated. Field-collected Anopheles albimanus contained in screen-top cages were strapped onto cattle at 2, 5, 7, and 14 days after treatment. Mosquito mortality was monitored once a day for 4 successive days. Surviving mosquitoes were dissected to assess blood meal digestion and ovarian development. RESULTS: A total of 1078 female An. albimanus mosquitoes were fed and monitored for mortality. Both fipronil and ivermectin significantly reduced survivorship of An. albimanus for up to 7 days after treatment. By 14 days, efficacy had declined. The ivermectin treatment completely lost its effectiveness and even though the fipronil-treated heifers were still killing significantly more mosquitoes than the untreated heifers, the amount of mosquito killing had diminished greatly. Both treatments significantly reduced ovary development in mosquitoes fed on treated cattle for the duration of the 2-week trial. CONCLUSIONS: Treatment of cattle in northern Belize with topical fipronil and injectable ivermectin had significant lethal and sublethal effects on wild An. albimanus females. These results suggest that efforts towards eliminating residual transmission of malaria by zoophagic vectors in Central America may benefit by the judicious, targeted treatment of livestock with mosquitocidal compounds, such as fipronil or ivermectin.
Assuntos
Inseticidas/administração & dosagem , Ivermectina/administração & dosagem , Controle de Mosquitos/métodos , Ovário/efeitos dos fármacos , Pirazóis/administração & dosagem , Administração Tópica , Animais , Belize , Bovinos , Comportamento Alimentar , Feminino , Injeções Intramusculares/efeitos adversos , Malária/prevenção & controle , Masculino , Mosquitos Vetores/parasitologia , Projetos PilotoRESUMO
Data on the prevalence and distribution of ticks and tick-borne diseases in Belize are lacking. Ticks (n = 564) collected from dogs, horses, and vegetation in two villages in Stann Creek District in southeastern Belize in 2018, were molecularly identified and screened for tick-borne nonviral human pathogens. The identity of 417 ticks was molecularly confirmed by DNA barcoding as Rhipicephalus sanguineus (Latreille) (66.43%), Amblyomma ovale Koch (15.59%), Dermacentor nitens Neumann (11.51%), Amblyomma sp. ADB0528 (3.6%), and the remainder being small records (2.87%) of Amblyomma coelebs Neumann, Amblyomma imitator Kohls, Amblyomma tapirellum Dunn, Amblyomma auricularium Conil, and Amblyomma maculatum Koch. Individual tick extracts were screened for the presence of Rickettsia spp., Babesia spp., Babesia microti, Borrelia spp., Ehrlichia spp., and Anaplasma spp. using available conventional polymerase chain reaction (PCR) assays. Rickettsia parkeri strain Atlantic Rainforest was identified in five specimens of A. ovale, and one other unidentified tick, all collected from dogs. Another unidentified tick-also collected from a dog-tested positive for an undefined but previously detected Ehrlichia sp. With the exception of D. nitens, all eight other tick species identified in this study were collected on dogs, suggesting that dogs could be usefully employed as sentinel animals for tick surveillance in Belize.