Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Psychiatry ; 26(4): 1410-1423, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-31520067

RESUMO

Aggregation and accumulation of amyloid beta (Aß) are believed to play a key role in the pathogenesis of Alzheimer's disease (AD). We previously reported that Thioredoxin-80 (Trx80), a truncated form of Thioredoxin-1, prevents the toxic effects of Aß and inhibits its aggregation in vitro. Trx80 levels were found to be dramatically reduced both in the human brain and cerebrospinal fluid of AD patients. In this study, we investigated the effect of Trx80 expression using in vivo and in vitro models of Aß pathology. We developed Drosophila melanogaster models overexpressing either human Trx80, human Aß42, or both Aß42/Trx80 in the central nervous system. We found that Trx80 expression prevents Aß42 accumulation in the brain and rescues the reduction in life span and locomotor impairments seen in Aß42 expressing flies. Also, we show that Trx80 induces autophagosome formation and reverses the inhibition of Atg4b-Atg8a/b autophagosome formation pathway caused by Aß42. These effects were also confirmed in human neuroblastoma cells. These results give insight into Trx80 function in vivo, suggesting its role in the autophagosome biogenesis and thus in Aß42 degradation. Our findings put Trx80 on the spotlight as an endogenous agent against Aß42-induced toxicity in the brain suggesting that strategies to enhance Trx80 levels in neurons could potentially be beneficial against AD pathology in humans.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Doença de Alzheimer/genética , Animais , Drosophila melanogaster , Humanos , Lisossomos , Fragmentos de Peptídeos , Tiorredoxinas/genética
2.
Front Cell Dev Biol ; 12: 1341373, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38764741

RESUMO

Sex differences in the developing human brain are primarily attributed to hormonal influence. Recently however, genetic differences and their impact on the developing nervous system have attracted increased attention. To understand genetically driven sexual dimorphisms in neurodevelopment, we investigated genome-wide gene expression in an in vitro differentiation model of male and female human embryonic stem cell lines (hESC), independent of the effects of human sex hormones. Four male and four female-derived hESC lines were differentiated into a population of mixed neurons over 37 days. Differential gene expression and gene set enrichment analyses were conducted on bulk RNA sequencing data. While similar differentiation tendencies in all cell lines demonstrated the robustness and reproducibility of our differentiation protocol, we found sex-biased gene expression already in undifferentiated ESCs at day 0, but most profoundly after 37 days of differentiation. Male and female cell lines exhibited sex-biased expression of genes involved in neurodevelopment, suggesting that sex influences the differentiation trajectory. Interestingly, the highest contribution to sex differences was found to arise from the male transcriptome, involving both Y chromosome and autosomal genes. We propose 13 sex-biased candidate genes (10 upregulated in male cell lines and 3 in female lines) that are likely to affect neuronal development. Additionally, we confirmed gene dosage compensation of X/Y homologs escaping X chromosome inactivation through their Y homologs and identified a significant overexpression of the Y-linked demethylase UTY and KDM5D in male hESC during neuron development, confirming previous results in neural stem cells. Our results suggest that genetic sex differences affect neuronal differentiation trajectories, which could ultimately contribute to sex biases during human brain development.

3.
Stem Cells Dev ; 29(23): 1497-1509, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33040644

RESUMO

Human neural stem cells (hNSCs) have long been used as an in vitro model to study neurogenesis and as candidates for nervous system therapy. Many parameters have been considered when evaluating the success of transplantation, but sex of donor and recipients is often not discussed. We investigated two commercial NSC lines, the female hNSC-H9 and male hNSC-H14, and we observed faster growth rates in the male cells. At 4 days of differentiation, male cells presented a significant increase in expression of DCX, an immature neuronal marker, while female cells showed a significant increase in RMST, a long noncoding RNA, which is indispensable during neurogenesis. In addition, expression of neural markers MAP2, PSD95, SYP, DCX, and TUJ1 at day 14 of differentiation suggested a similar differentiation potential in both lines. The most significant differences at day 14 of differentiation were the expression levels of RELN, with almost 100-fold difference between the sexes, and MASH1, with more than 1,000-fold increase in male cells. To evaluate whether some of the observed differences may be sex related, we measured the expression of gametologous genes located on the X- and Y-chromosome. Most noticeable was the increase of Y-encoded demethylases KDM6C (UTY) and KDM5D during differentiation of male cells. Our results indicate that attention should be paid to sex when planning neurogenesis and transplantation experiments.


Assuntos
Diferenciação Celular , Cromossomos Humanos Y/genética , Regulação Enzimológica da Expressão Gênica , Histona Desmetilases/genética , Antígenos de Histocompatibilidade Menor/genética , Antígenos de Histocompatibilidade Menor/metabolismo , Células-Tronco Neurais/citologia , Células-Tronco Neurais/enzimologia , Proteínas Nucleares/metabolismo , Biomarcadores/metabolismo , Diferenciação Celular/genética , Linhagem Celular , Proliferação de Células , Forma Celular , Cromossomos Humanos X/genética , Feminino , Histona Desmetilases/metabolismo , Humanos , Masculino , Proteínas Nucleares/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Proteína Reelina , Padrões de Referência
4.
Front Genet ; 10: 891, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31608120

RESUMO

Global microarray gene expression analyses previously demonstrated differences in female and male embryos during neurodevelopment. In particular, before sexual maturation of the gonads, the differences seem to concentrate on the expression of genes encoded on the X- and Y-chromosomes. To investigate genome-wide differences in expression during this early developmental window, we combined high-resolution RNA sequencing with qPCR to analyze brain samples from human embryos during the first trimester of development. Our analysis was tailored for maximum sensitivity to discover Y-chromosome gene expression, but at the same time, it was underpowered to detect X-inactivation escapees. Using this approach, we found that 5 out of 13 expressed gametolog pairs showed unbalanced gene dosage, and as a consequence, a male-biased expression. In addition, we found six novel non-annotated long non-coding RNAs on the Y-chromosome with conserved expression patterns in newborn chimpanzee. The tissue specific and time-restricted expression of these long non-coding RNAs strongly suggests important functions during central nervous system development in human males.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA