Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Shock ; 61(4): 557-563, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38604133

RESUMO

ABSTRACT: Escherichia coli and Staphylococcus aureus are two of the most common bacterial species responsible for sepsis. While it is observed that they have disparate clinical phenotypes, the signaling differences elicited by each bacteria that drive this variance remain unclear. Therefore, we used human whole blood exposed to heat-killed E. coli or S. aureus and measured the transcriptomic signatures. Relative to unstimulated control blood, heat-killed bacteria exposure led to significant dysregulation (upregulated and downregulated) of >5,000 genes for each experimental condition, with a slight increase in gene alterations by S. aureus. While there was significant overlap regarding proinflammatory pathways, Gene Ontology overrepresentation analysis of the most altered genes suggested biological processes like macrophage differentiation and ubiquinone biosynthesis were more unique to heat-killed S. aureus, compared with heat-killed E. coli exposure. Using Ingenuity Pathway Analysis, it was demonstrated that nuclear factor erythroid 2-related factor 2 signaling, a main transcription factor in antioxidant responses, was predominately upregulated in S. aureus exposed blood relative to E. coli. Furthermore, the use of pharmacologics that preferentially targeted the nuclear factor erythroid 2-related factor 2 pathway led to differential cytokine profiles depending on the type of bacterial exposure. These findings reveal significant inflammatory dysregulation between E. coli and S. aureus and provide insight into the targeting of unique pathways to curb bacteria-specific responses.


Assuntos
Infecções por Escherichia coli , Infecções Estafilocócicas , Humanos , Escherichia coli , Staphylococcus aureus , Fator 2 Relacionado a NF-E2/genética , Regulação da Expressão Gênica
2.
Front Aging Neurosci ; 11: 324, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31866849

RESUMO

The ubiquitin-proteasome pathway (UPP) has multiple roles in the normal nervous system, including the development of synaptic connections and synaptic plasticity. Research over the past several years has indicated a role for the UPP in aging without any overt pathology in the brain. In addition, malfunction of the UPP is implicated in Alzheimer's disease (AD) and dementia associated with it. In this mini review article, we assess the literature on the role of protein degradation by the UPP in aging and in AD with special emphasis on dysregulation of the UPP and its contribution to cognitive decline and impairment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA