Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Int J Mol Sci ; 23(16)2022 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-36012105

RESUMO

Background: Glioblastoma (GBM) is a highly aggressive cancer with poor prognosis that needs better treatment modalities. Moreover, there is a lack of reliable biomarkers to predict the response and outcome of current or newly designed therapies. While several molecular markers have been proposed as potential biomarkers for GBM, their uptake into clinical settings is slow and impeded by marker heterogeneity. Detailed assessment of prognostic and predictive value for biomarkers in well-defined clinical trial settings, if available, is scattered throughout the literature. Here we conducted a systematic review and meta-analysis to evaluate the prognostic and predictive significance of clinically relevant molecular biomarkers in GBM patients. Material and methods: A comprehensive literature search was conducted to retrieve publications from 3 databases (Pubmed, Cochrane and Embase) from January 2010 to December 2021, using specific terms. The combined hazard ratios (HR) and confidence intervals (95% CI) were used to evaluate the association of biomarkers with overall survival (OS) in GBM patients. Results: Twenty-six out of 1831 screened articles were included in this review. Nineteen articles were included in the meta-analyses, and 7 articles were quantitatively summarised. Fourteen studies with 1231 GBM patients showed a significant association of MGMT methylation with better OS with the pooled HR of 1.66 (95% CI 1.32−2.09, p < 0.0001, random effect). Five studies including 541 GBM patients analysed for the prognostic significance of IDH1 mutation showed significantly better OS in patients with IDH1 mutation with a pooled HR of 2.37 (95% CI 1.81−3.12; p < 0.00001]. Meta-analysis performed on 5 studies including 575 GBM patients presenting with either amplification or high expression of EGFR gene did not reveal any prognostic significance with a pooled HR of 1.31 (95% CI 0.96−1.79; p = 0.08). Conclusions: MGMT promoter methylation and IDH1 mutation are significantly associated with better OS in GBM patients. No significant associations were found between EGFR amplification or overexpression with OS.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Biomarcadores/metabolismo , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Neoplasias Encefálicas/metabolismo , Metilação de DNA , Metilases de Modificação do DNA/genética , Metilases de Modificação do DNA/metabolismo , Enzimas Reparadoras do DNA/genética , Enzimas Reparadoras do DNA/metabolismo , Glioblastoma/tratamento farmacológico , Humanos , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
2.
Biomedicines ; 11(11)2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-38001908

RESUMO

Genetic histone variants have been implicated in cancer development and progression. Mutations affecting the histone 3 (H3) family, H3.1 (encoded by HIST1H3B and HIST1H3C) and H3.3 (encoded by H3F3A), are mainly associated with pediatric brain cancers. While considered poor prognostic brain cancer biomarkers in children, more recent studies have reported H3 alterations in adult brain cancer as well. Here, we established reliable droplet digital PCR based assays to detect three histone mutations (H3.3-K27M, H3.3-G34R, and H3.1-K27M) primarily linked to childhood brain cancer. We demonstrate the utility of our assays for sensitively detecting these mutations in cell-free DNA released from cultured diffuse intrinsic pontine glioma (DIPG) cells and in the cerebral spinal fluid of a pediatric patient with DIPG. We further screened tumor tissue DNA from 89 adult patients with glioma and 1 with diffuse hemispheric glioma from Southwestern Sydney, Australia, an ethnically diverse region, for these three mutations. No histone mutations were detected in adult glioma tissue, while H3.3-G34R presence was confirmed in the diffuse hemispheric glioma patient.

3.
Front Endocrinol (Lausanne) ; 13: 895729, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35784572

RESUMO

Background: Up to 80% of breast cancers (BCa) are estrogen receptor positive and current treatments target the estrogen receptor (endocrine therapies) and/or CDK4/6 (CDK4/6 inhibitors). CCND1 encodes the protein cyclin D1, responsible for regulation of G1 to S phase transition in the cell cycle. CCND1 amplification is common in BCa and contributes to increased cyclin D1 expression. As there are signalling interactions between cyclin D1 and the estrogen receptor, understanding the impact of CCND1 amplification on estrogen receptor positive patients' disease outcomes, is vital. This review aims to evaluate CCND1 amplification as a prognostic and predictive biomarker in BCa. Materials and Methods: Publications were retrieved from the databases: PubMed, MEDLINE, Embase and Cochrane library. Exclusion criteria were duplication, publication type, non-English language, in vitro and animal studies, not BCa, male BCa, premenopausal BCa, cohort size <35, CCND1 amplification not reported. Publications with cohort duplication, and inadequate recurrence free survival (RFS) and overall survival (OS) data, were also excluded. Included publications were assessed for Risk of Bias (RoB) using the Quality In Prognosis Studies tool. Statistical analyses (Inverse Variance and Mantel-Haenszel) were performed in Review Manager. The PROSPERO registration number is [CRD42020208179]. Results: CCND1 amplification was significantly associated with positive estrogen receptor status (OR:1.70, 95% CI:1.19-2.43, p = 0.004) and cyclin D1 overexpression (OR: 5.64, 95% CI: 2.32-13.74, p=0.0001). CCND1 amplification was significantly associated with shorter RFS (OR: 1.64, 95% CI: 1.13-2.38, p = 0.009), and OS (OR: 1.51, 95% CI: 1.19-1.92, p = 0.0008) after removal of studies with a high RoB. In endocrine therapy treated patients specifically, CCND1 amplification predicted shorter RFS (HR: 2.59, 95% CI: 1.96-3.41, p < 0.00001) and OS (HR: 1.59, 95% CI: 1.00-2.49, p = 0.05) also after removal of studies with a high RoB. Conclusion: While a lack of standardised approach for the detection of CCND1 amplification is to be considered as a limitation, CCND1 amplification was found to be prognostic of shorter RFS and OS in BCa. CCND1 amplification is also predictive of reduced RFS and OS in endocrine therapy treated patients specifically. With standardised methods and cut offs for the detection of CCND1 amplification, CCND1 amplification would have potential as a predictive biomarker in breast cancer patients. Systematic Review Registration: https://www.crd.york.ac.uk/prospero/, identifier CRD42020208179.


Assuntos
Neoplasias da Mama , Ciclina D1 , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Ciclina D1/genética , Ciclina D1/metabolismo , Amplificação de Genes , Humanos , Pós-Menopausa/genética , Prognóstico , Receptores de Estrogênio/genética , Receptores de Estrogênio/metabolismo
4.
J Cancer Res Clin Oncol ; 147(4): 1007-1017, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33547950

RESUMO

The TERT promoter (pTERT) mutations, C228T and C250T, play a significant role in malignant transformation by telomerase activation, oncogenesis and immortalisation of cells. C228T and C250T are emerging as important biomarkers in many cancers including glioblastoma multiforme (GBM), where the prevalence of these mutations is as high as 80%. Additionally, the rs2853669 single nucleotide polymorphism (SNP) may cooperate with these pTERT mutations in modulating progression and overall survival in GBM. Using liquid biopsies, pTERT mutations, C228T and C250T, and other clinically relevant biomarkers can be easily detected with high precision and sensitivity, facilitating longitudinal analysis throughout therapy and aid in cancer patient management.In this review, we explore the potential for pTERT mutation analysis, via liquid biopsy, for its potential use in personalised cancer therapy. We evaluate the relationship between pTERT mutations and other biomarkers as well as their potential clinical utility in early detection, prognostication, monitoring of cancer progress, with the main focus being on brain cancer.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias Encefálicas/patologia , Glioma/patologia , Mutação , Telomerase/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia , Glioma/genética , Glioma/terapia , Humanos , Prognóstico
5.
Cells ; 9(9)2020 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-32932819

RESUMO

Therapy of hormone receptor positive breast cancer (BCa) generally targets estrogen receptor (ER) function and signaling by reducing estrogen production or by blocking its interaction with the ER. Despite good long-term responses, resistance to treatment remains a significant issue, with approximately 40% of BCa patients developing resistance to ET. Mutations in the gene encoding ERα, ESR1, have been identified in BCa patients and are implicated as drivers of resistance and disease recurrence. Understanding the molecular consequences of these mutations on ER protein levels and its activity, which is tightly regulated, is vital. ER activity is in part controlled via its short protein half-life and therefore changes to its stability, either through mutations or alterations in pathways involved in protein stability, may play a role in therapy resistance. Understanding these connections and how ESR1 alterations could affect protein stability may identify novel biomarkers of resistance. This review explores the current reported data regarding posttranslational modifications (PTMs) of the ER and the potential impact of known resistance associated ESR1 mutations on ER regulation by affecting these PTMs in the context of ET resistance.


Assuntos
Neoplasias da Mama/genética , Resistencia a Medicamentos Antineoplásicos/genética , Processamento de Proteína Pós-Traducional/genética , Receptores de Estrogênio/genética , Feminino , Humanos
6.
Cancers (Basel) ; 12(7)2020 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-32650387

RESUMO

Glioblastoma multiforme (GBM) is one of the most lethal primary central nervous system cancers with a median overall survival of only 12-15 months. The best documented treatment is surgical tumor debulking followed by chemoradiation and adjuvant chemotherapy with temozolomide, but treatment resistance and therefore tumor recurrence, is the usual outcome. Although advances in molecular subtyping suggests GBM can be classified into four subtypes, one concern about using the original histology for subsequent treatment decisions is that it only provides a static snapshot of heterogeneous tumors that may undergo longitudinal changes over time, especially under selective pressure of ongoing therapy. Liquid biopsies obtained from bodily fluids like blood and cerebro-spinal fluid (CSF) are less invasive, and more easily repeated than surgery. However, their deployment for patients with brain cancer is only emerging, and possibly suppressed clinically due to the ongoing belief that the blood brain barrier prevents the egress of circulating tumor cells, exosomes, and circulating tumor nucleic acids into the bloodstream. Although brain cancer liquid biopsy analyses appear indeed challenging, advances have been made and here we evaluate the current literature on the use of liquid biopsies for detection of clinically relevant biomarkers in GBM to aid diagnosis and prognostication.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA