Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
BMC Oral Health ; 15: 125, 2015 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-26468081

RESUMO

BACKGROUND: Conventional periodontal therapy aims at controlling supra- and subgingival biofilms. Although periodontal therapy was shown to improve periodontal health, it does not completely arrest the disease. Almost all subjects compliant with periodontal maintenance continue to experience progressive clinical attachment loss and a fraction of them loses teeth. An oral microbial transplant may be a new alternative for treating periodontitis (inspired by fecal transplant). First, it must be established that microbiomes of oral health and periodontitis are distinct. In that case, the health-associated microbiome could be introduced into the oral cavity of periodontitis patients. This relates to the goals of our study: (i) to assess if microbial communities of the entire oral cavity of subjects with periodontitis were different from or oral health contrasted by microbiotas of caries and edentulism patients; (ii) to test in vitro if safe concentration of sodium hypochlorite could be used for initial eradication of the original oral microbiota followed by a safe neutralization of the hypochlorite prior transplantation. METHODS: Sixteen systemically healthy white adults with clinical signs of one of the following oral conditions were enrolled: periodontitis, established caries, edentulism, and oral health. Oral biofilm samples were collected from sub- and supra-gingival sites, and oral mucosae. DNA was extracted and 16S rRNA genes were amplified. Amplicons from the same patient were pooled, sequenced and quantified. Volunteer's oral plaque was treated with saline, 16 mM NaOCl and NaOCl neutralized by ascorbate buffer followed by plating on blood agar. RESULTS: Ordination plots of rRNA gene abundances revealed distinct groupings for the oral microbiomes of subjects with periodontitis, edentulism, or oral health. The oral microbiome in subjects with periodontitis showed the greatest diversity harboring 29 bacterial species at significantly higher abundance compared to subjects with the other assessed conditions. Healthy subjects had significantly higher abundance in 10 microbial species compared to the other conditions. NaOCl showed strong antimicrobial properties; nontoxic ascorbate was capable of neutralizing the hypochlorite. CONCLUSIONS: Distinct oral microbial signatures were found in subjects with periodontitis, edentulism, or oral health. This finding opens up a potential for a new therapy, whereby a health-related entire oral microbial community would be transplanted to the diseased patient.


Assuntos
Microbiota , Periodontite , Transplante , Adulto , Bactérias/classificação , Biofilmes , Cárie Dentária/microbiologia , Cárie Dentária/terapia , Placa Dentária/microbiologia , Gengiva/microbiologia , Humanos , Boca/microbiologia , Periodontite/microbiologia , Periodontite/terapia
2.
Nucleic Acids Res ; 38(5): e28, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19969547

RESUMO

Microarray hybridization studies have attributed the nonlinearity of hybridization isotherms to probe saturation and post-hybridization washing. Both processes are thought to distort 'true' target abundance because immobilized probes are saturated with excess target and stringent washing removes loosely bound targets. Yet the paucity of studies aimed at understanding hybridization and dissociation makes it difficult to align physicochemical theory to microarray results. To fill the void, we first examined hybridization isotherms generated on different microarray platforms using a ribosomal RNA target and then investigated hybridization signals at equilibrium and after stringent wash. Hybridization signal at equilibrium was achieved by treating the microarray with isopropanol, which prevents nucleic acids from dissolving into solution. Our results suggest that (i) the shape of hybridization isotherms varied by microarray platform with some being hyperbolic or linear, and others following a power-law; (ii) at equilibrium, fluorescent signal of different probes hybridized to the same target were not similar even with excess of target and (iii) the amount of target removed by stringent washing depended upon the hybridization time, the probe sequence and the presence/absence of nonspecific targets. Possible physicochemical interpretations of the results and future studies are discussed.


Assuntos
Análise de Sequência com Séries de Oligonucleotídeos/métodos , Sequência de Bases , Calibragem , Corantes Fluorescentes , Modelos Químicos , Análise de Sequência com Séries de Oligonucleotídeos/normas , Sondas de Oligonucleotídeos/química , RNA Ribossômico/química , Temperatura
3.
J Microbiol Methods ; 76(2): 188-95, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19007823

RESUMO

Nonspecific target binding (i.e., cross-hybridization) is a major challenge for interpreting oligonucleotide microarray results because it is difficult to determine what portion of the signal is due to binding of complementary (specific) targets to a probe versus that due to binding of nonspecific targets. Solving this challenge would be a major accomplishment in microarray research potentially allowing quantification of targets in biological samples. Marcelino et al. recently described a new approach that reportedly solves this challenge by iteratively deconvoluting 'true' specific signal from raw signal, and quantifying ribosomal (rRNA) sequences in artificial and natural communities (i.e., "Accurately quantifying low-abundant targets amid similar sequences by revealing hidden correlations in oligonucleotide microarray data", Proc. Natl. Acad. Sci. 103, 13629-13634). We evaluated their approach using high-density oligonucleotide microarrays and Latin-square designed experiments consisting of 6 and 8 rRNA targets in 16 different artificial mixtures. Our results show that contrary to the claims in the article, the hidden correlations in the microarray data are insufficient for accurate quantification of nucleic acid targets in complex artificial target mixtures.


Assuntos
Análise de Sequência com Séries de Oligonucleotídeos/métodos , RNA Ribossômico 16S/análise , RNA Ribossômico 23S/análise , Algoritmos , Hibridização de Ácido Nucleico , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
4.
Nucleic Acids Res ; 35(9): e70, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17430966

RESUMO

Microarray experiments typically involve washing steps that remove hybridized nonspecific targets with the purpose of improving the signal-to-noise ratio. The quality of washing ultimately affects downstream analysis of the microarray and interpretation. The paucity of fundamental studies directed towards understanding the dissociation of mixed targets from microarrays makes the development of meaningful washing/dissociation protocols difficult. To fill the void, we examined activation energies and preexponential coefficients of 47 perfect match (PM) and double-mismatch (MM) duplex pairs to discover that there was no statistical difference between the kinetics of the PM and MM duplexes. Based on these findings, we evaluated the nonequilibrium thermal dissociation (NTD) approach, which has been used to identify specific microbial targets in mixed target samples. We found that the major premises for various washing protocols and the NTD approach might be seriously compromised because: (i) nonspecific duplexes do not always dissociate before specific ones, and (ii) the relationship between dissociation rates of the PM and MM duplexes depends on temperature and duplex sequence. Specifically for the NTD, we show that previously suggested use of reference curves, indices of curves and temperature ramps lead to erroneous conclusions.


Assuntos
Análise de Sequência com Séries de Oligonucleotídeos/métodos , Temperatura , Pareamento Incorreto de Bases , DNA Bacteriano/química , Cinética , Sondas de Oligonucleotídeos
5.
J Microbiol Methods ; 75(1): 92-102, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18579240

RESUMO

To date, it has been problematic to accurately quantify multiple nucleic acid sequences, representing microbial targets, in multi-target mixtures using oligonucleotide microarrays, primarily due to nonspecific target binding (i.e., cross-hybridization). While some studies ignore the effects of nonspecific binding, other studies have developed approaches to minimize nonspecific binding, such as physical modeling to design highly specific probes, subtracting nonspecific signal using mismatch probes, and/or removing nonspecific duplexes by scanning through a range of wash stringencies. We have developed an alternative approach that, in contrast to previous approaches, uses nonspecific target binding as a source of information. Specifically, the new approach uses hybridization patterns (fingerprints) to quantify specific nucleic acid targets in complex target mixtures. We evaluated the approach by mixing together in vitro transcribed 28S rRNA targets at varying concentrations (up to 1.0 nM), and hybridizing the 24 mixtures to microarrays (n=3160 probes, in duplicate). Three independent Latin-square-designed experiments revealed accurate quantification of the targets. The regression between actual concentration of targets and those determined by the approach were highly positively correlated with high R(2) values (e.g., R(2)=0.90, n=6 targets; R(2)=0.84, n=8 targets; R(2)=0.82, n=10 targets).


Assuntos
Eucariotos/genética , Hibridização de Ácido Nucleico , Análise de Sequência com Séries de Oligonucleotídeos/métodos , RNA Ribossômico/genética , Animais , Impressões Digitais de DNA/métodos , DNA de Protozoário/análise , DNA de Protozoário/genética , Eucariotos/classificação , Eucariotos/isolamento & purificação , RNA Ribossômico/análise , Sensibilidade e Especificidade
6.
J Microbiol Methods ; 74(2-3): 82-8, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18471911

RESUMO

The nonequilibrium thermal dissociation (NTD) methodology has been proposed to provide a superior discrimination between specific and nonspecific hybridizations than the commonly used array techniques involving hybridization followed by a single stringent wash. Multiple studies have used this method on gel-pad, planar, and nylon membrane arrays to identify specific microbial targets in complex target mixtures. A recent physicochemical study revealed several problems, particularly when the method was used to examine complex target samples. In the present study, we investigated the effect of target concentration on NTD of complex target samples obtained from an anaerobic bioreactor. Our purpose was to experimentally demonstrate that variation in the concentrations of both specific and nonspecific targets determines the course of dissociation, which was not evaluated in initial microbiological studies. We also present an approach for analyzing the dissociation curves that is less error prone compared to those used in the previous studies. Our results show that: (i) a specific target in a mixture, at a certain concentration, may have a higher dissociation temperature/time than that of the same pure target, and (ii) the concentration dependence of the dissociation precludes usage of reference curves for identifying a target. Contrary to the previous studies, an explicit calibration is required, which makes the NTD approach impractical for high throughput analysis.


Assuntos
Bactérias/isolamento & purificação , Hibridização de Ácido Nucleico/métodos , RNA Ribossômico 16S/genética , Bactérias/genética , Sensibilidade e Especificidade
7.
J Microbiol Methods ; 70(2): 292-300, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17553581

RESUMO

High-density oligonucleotide arrays can be extremely useful for identifying and quantifying specific targets (i.e., ribosomal RNA of microorganisms) in mixtures. However, current array identification schemes are severely compromised by nonspecific hybridization, resulting in numerous false-positive and false-negative calls, they lack an adequate internal control for assessing the quality of identification, and are dependent on amplification of specific target sequences which introduce biases. We have developed a novel approach for the routine quantification and identification of metabolically active microorganisms in mixed samples. The advantage of our approach over conventional ones is that it avoids designing, optimizing, validating, and selecting oligonucleotide probes for arrays; also, nonspecific hybridization is no longer a problem. The basic principle of the approach is that a fluorescence pattern of a mixed sample is a superposition of the fluorescent patterns for each target. The superposition can be quantitatively deconvoluted in terms of concentrations of each microbe. We demonstrated the utility of our approach by extracting rRNA from three microorganisms, making test mixtures, labeling the rRNA, and hybridizing each test mixture to DNA oligonucleotide (20-mers, n=346,608) arrays. Comparison of known concentrations of individual targets in mixtures to those estimated by the solution revealed highly consistent results. The goodness-of-fit of the solution revealed that about 90% of the variability in the data could be explained. A new analytical approach for microbial identification and quantification has been presented in this report. Our findings demonstrate that including signal intensity values from all duplexes on the array, which are essentially nonspecific to the target organisms, significantly improved predictions of known microbial targets. To our knowledge, this is the first study to report this phenomenon. In addition, we demonstrate that the method is a self-sufficient analytical procedure since it provides statistical confidence of the quantification.


Assuntos
Contagem de Colônia Microbiana/métodos , Análise de Sequência com Séries de Oligonucleotídeos/métodos , RNA Bacteriano/análise , RNA Ribossômico/análise , Contagem de Colônia Microbiana/normas , Hibridização de Ácido Nucleico/métodos , Análise de Sequência com Séries de Oligonucleotídeos/normas , RNA Bacteriano/genética , RNA Bacteriano/isolamento & purificação , RNA Ribossômico/genética , RNA Ribossômico/isolamento & purificação
8.
Data Brief ; 10: 30-32, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27942563

RESUMO

This article provides supporting data for the research article 'Microbial Signatures of Oral Dysbiosis, Periodontitis and Edentulism Revealed by Gene Meter Methodology' (M.C. Hunter, A.E. Pozhitkov, P.A. Noble, 2016) [1]. In that article, we determined the microbial abundance signatures for patient with periodontics, edentulism, or health using Gene Meter Technology. Here we provide the data used to make the DNA microarray and the resulting microbial abundance data that was determined using the calibrated probes and the 16S rRNA genes harvested from patients. The first data matrix contains two columns: one is the GenInfo Identifier (GI) numbers of the 16S rRNA gene sequences and the other is the corresponding oral bacterial taxonomy. The probes were then screened for redundancy and if they were found to be unique, they were synthesized onto the surface of the DNA microarrays. The second data matrix consists of the abundances of the 576 16S rRNA genes that was determined using the median value of all individual calibrated probes targeting each gene. The data matrix consists of 16 columns and 576 rows, with the columns representing the 16 patients and the rows representing 576 different oral microorganisms. The third data matrix consists of the abundances of 567 16S rRNA genes determined using the calibrated abundance of all aggregated probes targeting the same 16S rRNA gene. The data matrix of the aggregated probes consists of 16 samples and 567 rows.

9.
Forensic Sci Int ; 275: 90-101, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28329724

RESUMO

In criminal and civil investigations, postmortem interval is used as evidence to help sort out circumstances at the time of human death. Many biological, chemical, and physical indicators can be used to determine the postmortem interval - but most are not accurate. Here, we sought to validate an experimental design to accurately predict the time of death by analyzing the expression of hundreds of upregulated genes in two model organisms, the zebrafish and mouse. In a previous study, the death of healthy adults was conducted under strictly controlled conditions to minimize the effects of confounding factors such as lifestyle and temperature. A total of 74,179 microarray probes were calibrated using the Gene Meter approach and the transcriptional profiles of 1063 genes that significantly increased in abundance were assembled into a time series spanning from life to 48 or 96h postmortem. In this study, the experimental design involved splitting the transcription profiles into training and testing datasets, randomly selecting groups of profiles, determining the modeling parameters of the genes to postmortem time using over- and/or perfectly-defined linear regression analyses, and calculating the fit (R2) and slope of predicted versus actual postmortem times. This design was repeated several thousand to million times to find the top predictive groups of gene transcription profiles. A group of eleven zebrafish genes yielded R2 of 1 and a slope of 0.99, while a group of seven mouse liver genes yielded a R2 of 0.98 and a slope of 0.97, and seven mouse brain genes yielded a R2 of 0.95 and a slope of 0.87. In all cases, groups of gene transcripts yielded better postmortem time predictions than individual gene transcripts. The significance of this study is two-fold: selected groups of gene transcripts provide accurate prediction of postmortem time, and the successfully validated experimental design can now be used to accurately predict postmortem time in cadavers.


Assuntos
Perfilação da Expressão Gênica , Modelos Lineares , Análise de Sequência com Séries de Oligonucleotídeos , Mudanças Depois da Morte , Animais , Genética Forense/métodos , Camundongos Endogâmicos C57BL/genética , Transcriptoma , Peixe-Zebra/genética
10.
Open Biol ; 7(1)2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28123054

RESUMO

In life, genetic and epigenetic networks precisely coordinate the expression of genes-but in death, it is not known if gene expression diminishes gradually or abruptly stops or if specific genes and pathways are involved. We studied this by identifying mRNA transcripts that apparently increase in relative abundance after death, assessing their functions, and comparing their abundance profiles through postmortem time in two species, mouse and zebrafish. We found mRNA transcript profiles of 1063 genes became significantly more abundant after death of healthy adult animals in a time series spanning up to 96 h postmortem. Ordination plots revealed non-random patterns in the profiles by time. While most of these transcript levels increased within 0.5 h postmortem, some increased only at 24 and 48 h postmortem. Functional characterization of the most abundant transcripts revealed the following categories: stress, immunity, inflammation, apoptosis, transport, development, epigenetic regulation and cancer. The data suggest a step-wise shutdown occurs in organismal death that is manifested by the apparent increase of certain transcripts with various abundance maxima and durations.


Assuntos
Perfilação da Expressão Gênica/métodos , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Regulação para Cima , Peixe-Zebra/genética , Animais , Morte , Epigênese Genética , Feminino , Redes Reguladoras de Genes , Masculino , Camundongos
11.
J Periodontol ; 88(5): 436-442, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-27858551

RESUMO

BACKGROUND: Peri-implantitis represents a disruption of the biocompatible interface between the titanium dioxide layer of the implant surface and the peri-implant tissues. Increasing preclinical data suggest that peri-implantitis microbiota not only triggers an inflammatory immune response but also causes electrochemical alterations of the titanium surfaces, i.e., corrosion, that aggravate this inflammatory response. Thus, it was hypothesized that there is an association between dissolution of titanium from dental implants, which suggests corrosion, and peri-implantitis in humans. The objective of this study is to compare levels of dissolved titanium in submucosal plaque collected from healthy implants and implants with peri-implantitis. METHODS: Submucosal plaque from 20 implants with peri-implantitis and 20 healthy implants was collected with sterile curets from 30 participants. Levels of titanium were quantified using inductively coupled plasma mass spectrometry and normalized for mass of bacterial DNA per sample to exclude confounding by varying amounts of plaque per site. Statistical analysis was performed using generalized estimated equations to adjust for clustering of implants per participant. RESULTS: Implants with peri-implantitis harbored significantly higher mean levels of titanium (0.85 ± 2.47) versus healthy implants (0.07 ± 0.19) after adjusting for amount of plaque collected per site (P = 0.033). CONCLUSIONS: Greater levels of dissolved titanium were detected in submucosal plaque around implants with peri-implantitis compared with healthy implants, indicating an association between titanium dissolution and peri-implantitis. Factors triggering titanium dissolution, as well as the role of titanium corrosion in the peri-implant inflammatory process, warrant further investigation.


Assuntos
Placa Dentária/química , Peri-Implantite/etiologia , Titânio/efeitos adversos , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Estudos Transversais , Implantes Dentários/efeitos adversos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Peri-Implantite/induzido quimicamente , Titânio/análise
13.
J Microbiol Methods ; 131: 85-101, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27717873

RESUMO

Conceptual models suggest that certain microorganisms (e.g., the "red" complex) are indicative of a specific disease state (e.g., periodontitis); however, recent studies have questioned the validity of these models. Here, the abundances of 500+ microbial species were determined in 16 patients with clinical signs of one of the following oral conditions: periodontitis, established caries, edentulism, and oral health. Our goal was to determine if the abundances of certain microorganisms reflect dysbiosis or a specific clinical condition that could be used as a 'signature' for dental research. Microbial abundances were determined by the analysis of 138,718 calibrated probes using Gene Meter methodology. Each 16S rRNA gene was targeted by an average of 194 unique probes (n=25nt). The calibration involved diluting pooled gene target samples, hybridizing each dilution to a DNA microarray, and fitting the probe intensities to adsorption models. The fit of the model to the experimental data was used to assess individual and aggregate probe behavior; good fits (R2>0.90) were retained for back-calculating microbial abundances from patient samples. The abundance of a gene was determined from the median of all calibrated individual probes or from the calibrated abundance of all aggregated probes. With the exception of genes with low abundances (<2 arbitrary units), the abundances determined by the different calibrations were highly correlated (r~1.0). Seventeen genera were classified as 'signatures of dysbiosis' because they had significantly higher abundances in patients with periodontitis and edentulism when contrasted with health. Similarly, 13 genera were classified as 'signatures of periodontitis', and 14 genera were classified as 'signatures of edentulism'. The signatures could be used, individually or in combination, to assess the clinical status of a patient (e.g., evaluating treatments such as antibiotic therapies). Comparisons of the same patient samples revealed high false negatives (45%) for next-generation-sequencing results and low false positives (7%) for Gene Meter results.


Assuntos
Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Disbiose/microbiologia , Técnicas Microbiológicas/métodos , Técnicas de Diagnóstico Molecular/métodos , Boca/microbiologia , Periodontite/microbiologia , Adulto , Sequência de Bases , Calibragem , Sondas de DNA , DNA Bacteriano/genética , Cárie Dentária/diagnóstico , Cárie Dentária/microbiologia , Placa Dentária/microbiologia , Disbiose/diagnóstico , Reações Falso-Negativas , Reações Falso-Positivas , Feminino , Marcação de Genes/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Microbiota/genética , Pessoa de Meia-Idade , Hibridização de Ácido Nucleico/métodos , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Análise de Sequência com Séries de Oligonucleotídeos/normas , Saúde Bucal , Periodontite/diagnóstico , RNA Ribossômico 16S/genética , Análise de Sequência , Análise de Sequência de DNA/métodos , Washington
14.
PLoS One ; 10(10): e0140393, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26461491

RESUMO

Peri-implantitis is an inflammatory disease that results in the destruction of soft tissue and bone around the implant. Titanium implant corrosion has been attributed to the implant failure and cytotoxic effects to the alveolar bone. We have documented the extent of titanium release into surrounding plaque in patients with and without peri-implantitis. An in vitro model was designed to represent the actual environment of an implant in a patient's mouth. The model uses actual oral microbiota from a volunteer, allows monitoring electrochemical processes generated by biofilms growing on implants and permits control of biocorrosion electrical current. As determined by next generation DNA sequencing, microbial compositions in experiments with the in vitro model were comparable with the compositions found in patients with implants. It was determined that the electrical conductivity of titanium implants was the key factor responsible for the biocorrosion process. The interruption of the biocorrosion current resulted in a 4-5 fold reduction of corrosion. We propose a new design of dental implant that combines titanium in zero oxidation state for osseointegration and strength, interlaid with a nonconductive ceramic. In addition, we propose electrotherapy for manipulation of microbial biofilms and to induce bone healing in peri-implantitis patients.


Assuntos
Implantes Dentários , Condutividade Elétrica , Titânio/química , Bactérias/efeitos dos fármacos , Corrosão , Eletroquímica , Humanos , Titânio/farmacologia
15.
PLoS One ; 9(3): e91295, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24618910

RESUMO

BACKGROUND: Although microarrays are analysis tools in biomedical research, they are known to yield noisy output that usually requires experimental confirmation. To tackle this problem, many studies have developed rules for optimizing probe design and devised complex statistical tools to analyze the output. However, less emphasis has been placed on systematically identifying the noise component as part of the experimental procedure. One source of noise is the variance in probe binding, which can be assessed by replicating array probes. The second source is poor probe performance, which can be assessed by calibrating the array based on a dilution series of target molecules. Using model experiments for copy number variation and gene expression measurements, we investigate here a revised design for microarray experiments that addresses both of these sources of variance. RESULTS: Two custom arrays were used to evaluate the revised design: one based on 25 mer probes from an Affymetrix design and the other based on 60 mer probes from an Agilent design. To assess experimental variance in probe binding, all probes were replicated ten times. To assess probe performance, the probes were calibrated using a dilution series of target molecules and the signal response was fitted to an adsorption model. We found that significant variance of the signal could be controlled by averaging across probes and removing probes that are nonresponsive or poorly responsive in the calibration experiment. Taking this into account, one can obtain a more reliable signal with the added option of obtaining absolute rather than relative measurements. CONCLUSION: The assessment of technical variance within the experiments, combined with the calibration of probes allows to remove poorly responding probes and yields more reliable signals for the remaining ones. Once an array is properly calibrated, absolute quantification of signals becomes straight forward, alleviating the need for normalization and reference hybridizations.


Assuntos
Análise de Sequência com Séries de Oligonucleotídeos/métodos , Análise de Sequência com Séries de Oligonucleotídeos/normas , Animais , Calibragem , Variações do Número de Cópias de DNA , Perfilação da Expressão Gênica , Camundongos , Reprodutibilidade dos Testes
16.
Brief Funct Genomic Proteomic ; 6(2): 141-8, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17644526

RESUMO

Microarray technology, which has been around for almost two decades, now provides an indispensable service to the biomedical research community. Soaring demand for high-throughput screening of genes potentially associated with cancer and other diseases, as well as the increased need for identifying microorganisms, have substantially opened up the application of this technology to many fields of science, including new ones such as array-based comparisons of whole genomes. Yet, despite this significant progress, the fundamental understanding of the pillars of this technology, have been largely unexplored, in particular for oligonucleotide-based microarrays. In fact, most of the current approaches for the design of microarrays are based on 'common-sense' parameters, such as guanine-cytosine content, secondary structure, melting temperature or possibility of minimizing the effects of nonspecific hybridization. However, recent experiments suggest that these are inadequate. Here we discuss these results, which challenge the basic principles and assumptions of oligonucleotide microarray technology. It is clear that more systematic physicochemical studies will be required to better understand the hybridization and dissociation behaviour of oligonucleotides.


Assuntos
Análise de Sequência com Séries de Oligonucleotídeos/métodos , Animais , Perfilação da Expressão Gênica , Humanos , Cinética , Modelos Biológicos , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA