RESUMO
PURPOSE: Germline loss-of-function variants in CTNNB1 cause neurodevelopmental disorder with spastic diplegia and visual defects (NEDSDV; OMIM 615075) and are the most frequent, recurrent monogenic cause of cerebral palsy (CP). We investigated the range of clinical phenotypes owing to disruptions of CTNNB1 to determine the association between NEDSDV and CP. METHODS: Genetic information from 404 individuals with collectively 392 pathogenic CTNNB1 variants were ascertained for the study. From these, detailed phenotypes for 52 previously unpublished individuals were collected and combined with 68 previously published individuals with comparable clinical information. The functional effects of selected CTNNB1 missense variants were assessed using TOPFlash assay. RESULTS: The phenotypes associated with pathogenic CTNNB1 variants were similar. A diagnosis of CP was not significantly associated with any set of traits that defined a specific phenotypic subgroup, indicating that CP is not additional to NEDSDV. Two CTNNB1 missense variants were dominant negative regulators of WNT signaling, highlighting the utility of the TOPFlash assay to functionally assess variants. CONCLUSION: NEDSDV is a clinically homogeneous disorder irrespective of initial clinical diagnoses, including CP, or entry points for genetic testing.
Assuntos
Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Humanos , Fenótipo , Transtornos do Neurodesenvolvimento/genética , Via de Sinalização Wnt/genética , Deficiência Intelectual/genética , Genômica , beta Catenina/genéticaRESUMO
X-linked myotubular myopathy (XLMTM; OMIM 310400) is a centronuclear congenital muscular disorder of X-linked recessive inheritance. Although female carriers are typically asymptomatic, affected heterozygous females have been described. Here, we describe the case of a sporadic female patient with suspicion of centronuclear myopathy and a heterozygous large deletion at Xq28 encompassing the MAMLD1, MTM1, MTMR1, CD99L2, and HMGB3 genes. The deletion was first detected using a custom next generation sequencing (NGS)-based multigene panel and finally characterized by comparative genomic hybridization array and multiplex ligation probe assay techniques. In this patient we have confirmed, by MTM1 mRNA quantification, a MTM1 gene expression less than the expected 50 percent in patient muscle. The significant 20% reduction in MTM1 mRNA expression in muscle, precludes low level of the normal myotubularin protein as the cause of the phenotype in this heterozygous female. We have also found that BIN1 expression in patient muscle biopsy was significantly increased, and postulate that BIN1 expression will be increased in XLMTM patient muscle as an attempt to maintain muscle function.